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Chapter 0: Introduction
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00.01 Data Structures and Algorithms

0.1. Data Structures and Algorithms

0.1.1. Data Structures and Algorithms

0.1.1.1. Introduction

How many cities with more than 250,000 people lie within 500 miles of Dallas, Texas? How many people in my
company make over $100,000 per year? Can we connect all of our telephone customers with less than 1,000 miles
of cable? To answer questions like these, it is not enough to have the necessary information. We must organize that
information in a way that allows us to find the answers in time to satisfy our needs.

Representing information is fundamental to computer science. The primary purpose of most computer programs is
not to perform calculations, but to store and retrieve information—usually as fast as possible. For this reason, the
study of data structures and the algorithms that manipulate them is at the heart of computer science. And that is
what this book is about—helping you to understand how to structure information to support efficient processing.

Any course on Data Structures and Algorithms will try to teach you about three things:

1. It will present a collection of commonly used data structures and algorithms. These form a programmer’s basic
“toolkit”. For many problems, some data structure or algorithm in the toolkit will provide a good solution. We
focus on data structures and algorithms that have proven over time to be most useful.

2. It will introduce the idea of tradeoffs, and reinforce the concept that there are costs and benefits associated with
every data structure or algorithm. This is done by describing, for each data structure, the amount of space and
time required for typical operations. For each algorithm, we examine the time required for key input types.

3.1t will teach you how to measure the effectiveness of a data structure or algorithm. Only through such
measurement can you determine which data structure in your toolkit is most appropriate for a new problem. The
techniques presented also allow you to judge the merits of new data structures that you or others might invent.

There are often many approaches to solving a problem. How do we choose between them? At the heart of computer
program design are two (sometimes conflicting) goals:

1. To design an algorithm that is easy to understand, code, and debug.

2. To design an algorithm that makes efficient use of the %omputer’s resources.



Ideally, the resulting program is true to both of these goals. We might say that such a program is “elegant.” While the
algorithms and program code examples presented here attempt to be elegant in this sense, it is not the purpose of
this book to explicitly treat issues related to goal (1). These are primarily concerns for the discipline of Software
Engineering. Rather, we mostly focus on issues relating to goal (2).

How do we measure efficiency? Our method for evaluating the efficiency of an algorithm or computer program is
called asymptotic analysis. Asymptotic analysis also gives a way to define the inherent difficulty of a problem.
Throughout the book we use asymptotic analysis techniques to estimate the time cost for every algorithm
presented. This allows you to see how each algorithm compares to other algorithms for solving the same problem in
terms of its efficiency.

0.1.1.2. A Philosophy of Data Structures

You might think that with ever more powerful computers, program efficiency is becoming less important. After all,
processor speed and memory size still continue to improve. Won’t today’s efficiency problem be solved by
tomorrow’s hardware?

As we develop more powerful computers, our history so far has always been to use that additional computing power
to tackle more complex problems, be it in the form of more sophisticated user interfaces, bigger problem sizes, or
new problems previously deemed computationally infeasible. More complex problems demand more computation,
making the need for efficient programs even greater. Unfortunately, as tasks become more complex, they become
less like our everyday experience. So today’s computer scientists must be trained to have a thorough understanding
of the principles behind efficient program design, because their ordinary life experiences often do not apply when
designing computer programs.

In the most general sense, a data structure is any data representation and its associated operations. Even an
integer or floating point number stored on the computer can be viewed as a simple data structure. More commonly,
people use the term “data structure” to mean an organization or structuring for a collection of data items. A sorted
list of integers stored in an array is an example of such a structuring. These ideas are explored further in a
discussion of Abstract Data Types.

Given sufficient space to store a collection of data items, it is always possible to search for specified items within
the collection, print or otherwise process the data items in any desired order, or modify the value of any particular
data item. The most obvious example is an unsorted array containing all of the data items. It is possible to perform
all necessary operations on an unsorted array. However, using the proper data structure can make the difference
between a program running in a few seconds and one requiring many days. For example, searching for a given
record in a hash table is much faster than searching for it in an unsorted array.

A solution is said to be efficient if it solves the problem within the required resource constraints. Examples of
resource constraints include the total space available to store the data—possibly divided into separate main
memory and disk space constraints—and the time allowed to perform each subtask. A solution is sometimes said to
be efficient if it requires fewer resources than known alternatives, regardless of whether it meets any particular
requirements. The cost of a solution is the amount of resources that the solution consumes. Most often, cost is
measured in terms of one key resource such as time, with the implied assumption that the solution meets the other
resource constraints.

0.1.1.3. Selecting a Data Structure



It should go without saying that people write programs to solve problems. However, sometimes programmers forget
this. So it is crucial to keep this truism in mind when selecting a data structure to solve a particular problem. Only
by first analyzing the problem to determine the performance goals that must be achieved can there be any hope of
selecting the right data structure for the job. Poor program designers ignore this analysis step and apply a data
structure that they are familiar with but which is inappropriate to the problem. The result is typically a slow program.
Conversely, there is no sense in adopting a complex representation to “improve” a program that can meet its
performance goals when implemented using a simpler design.

When selecting a data structure to solve a problem, you should follow these steps.

1. Analyze your problem to determine the basic operations that must be supported. Examples of basic operations
include inserting a data item into the data structure, deleting a data item from the data structure, and finding a
specified data item.

2. Quantify the resource constraints for each operation.
3. Select the data structure that best meets these requirements.

This three-step approach to selecting a data structure operationalizes a data-centered view of the design process.
The first concern is for the data and the operations to be performed on them, the next concern is the representation
for those data, and the final concern is the implementation of that representation.

Resource constraints on certain key operations, such as search, inserting data records, and deleting data records,
normally drive the data structure selection process. Many issues relating to the relative importance of these
operations are addressed by the following three questions, which you should ask yourself whenever you must
choose a data structure.

1. Are all data items inserted into the data structure at the beginning, or are insertions interspersed with other
operations? Static applications (where the data are loaded at the beginning and never change) typically get by
with simpler data structures to get an efficient implementation, while dynamic applications often require
something more complicated.

2. Can data items be deleted? If so, this will probably make the implementation more complicated.

3. Are all data items processed in some well-defined order, or is search for specific data items allowed? “Random
access” search generally requires more complex data structures.

Each data structure has associated costs and benefits. In practice, it is hardly ever true that one data structure is
better than another for use in all situations. If one data structure or algorithm is superior to another in all respects,
the inferior one will usually have long been forgotten. For nearly every data structure and algorithm presented in this
book, you will see examples of where it is the best choice. Some of the examples might surprise you.

A data structure requires a certain amount of space for each data item it stores, a certain amount of time to perform
a single basic operation, and a certain amount of programming effort. Each problem has constraints on available
space and time. Each solution to a problem makes use of the basic operations in some relative proportion, and the
data structure selection process must account for this. Only after a careful analysis of your problem’s characteristics
can you determine the best data structure for the task.

Examble 0.1.1 10
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A bank must support many types of transactions with its customers, but we will examine a simple model where
customers wish to open accounts, close accounts, and add money or withdraw money from accounts. We can
consider this problem at two distinct levels: (1) the requirements for the physical infrastructure and workflow
process that the bank uses in its interactions with its customers, and (2) the requirements for the database
system that manages the accounts.

The typical customer opens and closes accounts far less often than accessing the account. Customers are willing
to spend many minutes during the process of opening or closing the account, but are typically not willing to wait
more than a brief time for individual account transactions such as a deposit or withdrawal. These observations
can be considered as informal specifications for the time constraints on the problem.

It is common practice for banks to provide two tiers of service. Human tellers or automated teller machines
(ATMs) support customer access to account balances and updates such as deposits and withdrawals. Special
service representatives are typically provided (during restricted hours) to handle opening and closing accounts.
Teller and ATM transactions are expected to take little time. Opening or closing an account can take much longer
(perhaps up to an hour from the customer’s perspective).

From a database perspective, we see that ATM transactions do not modify the database significantly. For
simplicity, assume that if money is added or removed, this transaction simply changes the value stored in an
account record. Adding a new account to the database is allowed to take several minutes. Deleting an account
need have no time constraint, because from the customer’s point of view all that matters is that all the money be
returned (equivalent to a withdrawal). From the bank’s point of view, the account record might be removed from
the database system after business hours, or at the end of the monthly account cycle.

When considering the choice of data structure to use in the database system that manages customer accounts,
we see that a data structure that has little concern for the cost of deletion, but is highly efficient for search and
moderately efficient for insertion, should meet the resource constraints imposed by this problem. Records are
accessible by unique account number (sometimes called an exact-match query). One data structure that meets
these requirements is the hash table. Hash tables allow for extremely fast exact-match search. A record can be
modified quickly when the modification does not affect its space requirements. Hash tables also support efficient
insertion of new records. While deletions can also be supported efficiently, too many deletions lead to some
degradation in performance for the remaining operations. However, the hash table can be reorganized
periodically to restore the system to peak efficiency. Such reorganization can occur offline so as not to affect ATM
transactions.

Example 0.1.2

A company is developing a database system containing information about cities and towns in the United States.
There are many thousands of cities and towns, and the database program should allow users to find information
about a particular place by name (another example of an exact-match query). Users should also be able to find all
places that match a particular value or range of values for attributes such as location or population size. This is
known as a range query.

A reasonable database system must answer queries quickly enough to satisfy the patience of a typical user. For
an exact-match query, a few seconds is satisfactory. If the database is meant to support range queries that can

return many cities that match the query specification, the user might tolerate the entire operation to take longer,
. . } A . _ . 1 S : i



perhaps on the order of a minute. To meet this requirement, it will be necessary to support operations that
process range queries efficiently by processing all cities in the range as a batch, rather than as a series of
operations on individual cities.

The hash table suggested in the previous example is inappropriate for implementing our city database, because it
cannot perform efficient range queries. The B*-tree supports large databases, insertion and deletion of data
records, and range queries. However, a simple linear index would be more appropriate if the database is created
once, and then never changed, such as an atlas distributed on a CD or accessed from a website.

0.1.1.4. Introduction Summary Questions

Practicing Introduction: Su mmary Questions Current score: O out of
5
As computers have become more powerful: Answer

(O We are better able to use our everyday intuition to solve problems
(O We have used that additional computing power to tackle more complex problems

Need help?

(O The need for good algorithms has become less because processor speed can

make up for a slow algorithm

(O The algorithms have become easier to understand

12
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Chapter 1: Recursion

OpenDSA License

OpenDSA is Copyright © 2013-2016 by Ville Karavirta and Cliff Shaffer.
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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1.1. Introduction

1.1.1. Introduction

An algorithm (or a function in a computer program) is recursive if it invokes itself to do part of its work. Recursion
makes it possible to solve complex problems using programs that are concise, easily understood, and
algorithmically efficient. Recursion is the process of solving a large problem by reducing it to one or more sub-
problems which are identical in structure to the original problem and somewhat simpler to solve. Once the original
subdivision has been made, the sub-problems divided into new ones which are even less complex. Eventually, the
sub-problems become so simple that they can be then solved without further subdivision. Ultimately, the complete
solution is obtained by reassembling the solved components.

For a recursive approach to be successful, the recursive “call to itself” must be on a smaller problem than the one
originally attempted. In general, a recursive algorithm must have two parts:

1. The base case, which handles a simple input that can be solved without resorting to a recursive call, and

2. The recursive part which contains one or more recursive calls to the algorithm. In every recursive call, the
parameters must be in some sense “closer” to the base case than those of the original call.

Recursion has no counterpart in everyday, physical-world problem solving. The concept can be difficult to grasp
because it requires you to think about problems in a new way. When first learning recursion, it is common for people
to think a lot about the recursive process. We will spend some time in these modules going over the details for how
recursion works. But when writing recursive functions, it is best to stop thinking about how the recursion works
beyond the recursive call. You should adopt the attitude that the sub-problems will take care of themselves, that
when you call the function recursively it will return the right answer. You just worry about the base cases and how to
recombine the sub-problems.

Newcomers who are unfamiliar with recursion often find it hard to accept that it is used primarily as a tool for
simplifying the design and description of algorithms. A recursive algorithm does not always yield the most efficient
computer program for solving the problem because recursion involves function calls, which are typically more
expensive than other alternatives such as a while loop. However, the recursive approach usually provides an
algorithm that is reasonably efficient. If necessary, the clear, recursive solution can later be modified to yield a faster
implementation.

Imagine that someone in a movie theater asks you what row you’re sitting in. You don’t want to count, so you ask
the person in front of you what row they are sitting in, knowing that they will tell you a number one less than your
row number. The person in front could ask the person in front of them. This will keep happening until word reaches
the front row and it is easy to respond: “I'm in row 1!” From there, the correct message (incremented by one each
row) will eventually make it's way back to the person who asked.

Imagine that you have a big task. You could just do a small piece of it, and then delegate the rest to some helper, as
in this example.

& @ & &



You want to multiply two numbers x and y.

int multiply(int x, int y) {

if (x == 1)
return y;
else

return multiply(x - 1, y) + y;
xX*y?

Let’s look deeper into the details of what your friend does when you delegate the work. (Note that we show you this
process once now, and once again when we look at some recursive functions. But when you are writing your own
recursive functions, you shouldn’t worry about all of these details.)

= © & &

You want to multiply two numbers x and y.

int multiply(int x, int y) {

if (x == 1)
return y;
else

return multiply(x - 1, y) + vy;

xX*y?

In arder tn 1inderstand raciireinn vnii need tn he ahla tn dn twn thinase Firet vnil have ta 1indersetand hnw tn read a

16



1.2. Writing a recursive function

1.2.1. Writing a recursive function

Solving a “big” problem recursively means to solve one or more smaller versions of the problem, and using those
solutions of the smaller problems to solve the “big” problem. In particular, solving problems recursively means that
smaller versions of the problem are solved in a similar way. For example, consider the problem of summing values
of an array. What's the difference between summing the first 50 elements in an array versus summing the first 100
elements? You would use the same technique. You can even use the solution to the smaller problem to help you
solve the larger problem.

Here are the basic four steps that you need to write any recursive function.

= O & &

Step 1: Write and define the prototype for the function.

Now le’t see some different ways that we could write Sum recursively.

= © O &

Here are a few variations on how to solve the sum problem recursively.

17



Example 1.2.1

Our example for summing the first n numbers of an array could have been written just as easily using a loop.
Here is an example of a function that is more naturally written using recursion.

The following code computes the Fibonacci sequence for a given number. The Fibonacci Sequence is the series
of numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, ... Any number in the sequence is found by adding up the two numbers
before it. The base cases are that Fibonacci(®) = 1 and Fibonacci(1) = 1.

Java (Generic)

long Fibonacci(int n) {
if (n < 2) {
return 1;

}

return Fibonacci(n - 1) + Fibonacci(n - 2);

}

18



01.03 Code Completion Practice Exercises
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01.03 Code Completion Practice Exercises

1.3. Code Completion Practice Exercises

1.3.1. Introduction

The most important step to learning recursion is doing a lot of practice. The rest of this tutorial will take you through
the process with a series of practice exercises that will lead you to master recursion.

1.3.2. Recursion Programming Exercise: Largest

X263: Recursion Programming Exercise: Largest

Write the missing base case for function largest. Function largest should find the largest number in ari

called, index will equal numbers.length-1.

Examples:

largest({2, 4, 8}, 2) -> 8

Your Answer: Feedback

1 public int largest(int[] numbers, int index) { Your feedback will a
2 if <<Missing base case>>

3 return numbers[0];

4  return Math.max(numbers[index], largest(numbers, index-1));
5

6

answer.

}

Check my answer! Reset
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1.3.3. Recursion Programming Exercise: Multiply

X264: Recursion Programming Exercise: Multiplx

For function multiply , write the missing base case condition and action. This function will multiply two r

that both x and y are positive.

Examples:

multiply(2, 3) -> 6

Your Answer:

Feedback

1 public int multiply(int x, int y) {
2 if <<Missing base case condition>> {
3 <<Missing base case action>>
4 3} else {
5 return multiply(x - 1, y) + vy;
6 }
7}
8

Check my answer! Reset

20
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1.3.4. Recursion Programming Exercise: GCD

X265: Recursion Programming Exercise: GCD

The greatest common divisor (GCD) for a pair of numbers is the largest positive integer that divides both ni
function GCD, write the missing base case condition and action. This function will compute the greatest co
assume that x and y are both positive integers and that x > y. Greatest common divisor is computed as
GCD(x, @) = x and GCD(x, y) = GCD(y, x % y).

Examples:

GCD(6, 4) -> 2

Your Answer: Feedback

1 public int GCD(int x, int y) { Your feedback will aj
2 if <<Missing base case condition>> { answer.
3 <<Missing base case action>>
4 3} else {
5
6
7
8

return GCD(y, X % y);

}
}

(Chorls mv ancwarl Racat 21
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1.3.5. Recursion Programming Exercise: log

X266: Recursion Programming Exercise: log

For function log, write the missing base case condition and the recursive call. This function computes the

example: log 8 to the base 2 equals 3 since 8 = 2*2*2. We can find this by dividing 8 by 2 until we reach 1, .

divisions we make. You should assume that n is exactly b to some integer power.

Examples:

log(2, 4) -> 2

log(10, 100) -> 2

Your Answer:

Feedback

1 public int log(int b, int n ) {
2 if <<Missing base case condition>> {
3 return 0;
4 3} else {
5 return <<Missing a Recursive case action>>
6 }
7}

8

(Chorls mv ancwarl Racat 22
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1.3.6. Recursion Programming Exercise: Cummulative Sum

X267: Recursion Programming Exercise: Cumula

For function sumtok , write the missing recursive call. This function returns the sum of the values from 1 tc

Examples:

sumtok(5) -> 15

Your Answer:

Feedback

1 public int sumtok(int k) {
2 if (k <= 0) {
3 return 0;
4 } else {
5 return <<Missing Recursive case action>>
6 }
7}

8

Check my answer! Reset

23
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1.3.7. Recursion Programming Exercise: Add odd values

X268: Recursion Programming Exercise: Add odc

For function addodd(n) write the missing recursive call. This function should return the sum of all postive

n.

Examples:
addodd(1) -> 1
addodd(2) -> 1
addodd(3) -> 4

addodd(7) -> 16

Your Answer: Feedback

public int addodd(int n) { Your feedback will g
if (n <= 9)
return 0;

1
2 answer.
3

4}

5 if (n% 2 '=0) { // 0dd value

6 return <<Missing a Recursive call>>
7 } else { // Even value

8 return addodd(n - 1);

9 }

10 }

11
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Check my answer! Reset

1.3.8. Recursion Programming Exercise: Sum Of the Digits

X269: Recursion Programming Exercise: Sum of

For function sumOfDigits , write the missing recursive call. This function takes a non-negative integer and

Examples:

sumofDigits(1234) -> 10

Your Answer:

Feedback

1 public int sumOfDigits(int number) {

2 if (number < 10)

3 return number;

4  return <<Missing a Recursive case action>>
5

6

}

Check my answer! Reset

25
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1.3.9. Recursion Programming Exercise: Count Characters

X270: Recursion Programming Exercise: Count (

For function countChr() write the missing part of the recursive call. This function should return the numt
appears in string "str".
Recall that str.substring(a) will return the substring of str from position a to the end of str, while

the substring of str starting at position a and continuing to (but not including) the character at position

Examples:

countChr("ctcowcAt") -> 1

Your Answer: Feedback

public int countChr(String str) { Your feedback will aj
if (str.length() == 0) {
return 0;

}

1

2 answer.
3

4

5 int count = 0;

6

7

8

9

if (str.substring(@, 1).equals("A")) {
count = 1;

}

return count + <<Missing a Recursive call>>
10 }
11
Check my answer! Reset

26
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1.4. Writing More Sophisticated Recursive
Functions

Some recursive functions have only one base case and one recursive call. But it is common for there to be more
than one of either or both.

The following is the general structure for a recursive function.

Java (Generic)

if ( base case 1 )

// return some simple expression
else if ( base case 2 )

// return some simple expression
else if ( base case 3 )

// return some simple expression
else if ( recursive case 1 ) {

// some work before

// recursive call

// some work after

}
else if ( recursive case 2 ) {

// some work before

// recursive call

// some work after

}
else { // recursive case 3

// some work before

// recursive call

// some work after

}

Example 1.4.1

Consider a rather simple function to determine if an integer X is prime or not. Y is a helper variable that is used as
the devisor. When calling the function initially, Y = X - 1

Java (Generic)

§ boolean prime(int x, int y) {
Lif (y == 1)
return true;
else if (x % y == 0)

28



return talse;
else
return prime(x, y-1);

We see that Prime has two base cases and one recursive call.

Example 1.4.2

Here is a function that has multiple recursive calls. Given an int array named set, function isSubsetSum
determines whether some of the values in set add up to sum. For example, given the number 3, 8, 1, 7, and -3,
with sum = 4, the result is true because the values 3 and 1 sum to 4. If sum = 6, then the result will be true
because the 8 +1 4+ —3 = 6. On the other hand, if sum = 2 then the result is false there is no combination of the
five numbers that adds up to 2. In this code, variable n is the number of values that we look at. We don’t want to
just use set.length because the recursive calls need to limit their work to part of the array.

Java (Generic)

boolean isSubsetSum(int set[], int n, int sum) {
if (sum == 0)
return true;
if ((n == 0) && (sum != 9))
return false;
if (set[n - 1] > sum)
return isSubsetSum(set, n - 1, sum);
return isSubsetSum(set, n - 1, sum) || isSubsetSum(set, n - 1, sum - set[n - 1]);

}

This example has two base cases and two recursive calls.

Example 1.4.3

Here is a function that has multiple base cases and multiple recursive calls. Function paths counts the number of
different ways to reach a given basketball score. Recall that in Basketball, it is possible to get points in increments
of 1, 2, or 3. So if n = 3, then paths will return 4, since there are four different ways to accumulate 3 points:

1+1+1,1+2,2+1,and 3.

Java (Generic)

é int paths(int n) {
i if (n == 1) 29



return 1;
if (n == 2)
return 2;
if (n == 3)
return 4;
return paths(n - 1) + paths(n - 2) + paths(n - 3);
}

This function has three base cases and three recursive calls.
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01.05 Harder Code Completion Practice Exercises

Due No Due Date Points 6 Submitting an external tool

01.05 Harder Code Completion Practice Exercises

1.5. Harder Code Completion Practice Exercises

1.5.1. Recursion Programming Exercise: Minimum of array

X271: Recursion Programming Exercises: Minimt

For function recursiveMin , write the missing part of the recursive call. This function should return the mi

integers. You should assume that recursiveMin is initially called with startIndex =0.

Examples:

recursiveMin({2, 4, 8}, @) -> 2

Your Answer: Feedback
1 public int recursiveMin(int numbers[], int startIndex) {
2 if (startIndex == numbers.length - 1) { ¥f%/
3 return numbers[startIndex]; )
4 Jelsef Result  Behavic
5 return Math.min(numbers[startIndex], recursiveMin(numbers,
t I 1)); .
startIndex + 1)) recursiv
6 }

7} .
8 recursiv
recursiv
recursiv

Check my answer! Reset
hidden
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1.5.2. Recursion Programming Exercise: Is Reverse

X272: Recursion Programming Exercise: Is Reve:

For function isReverse, write the two missing base case conditions. Given two strings, this function retur

identical, but are in reverse order. Otherwise it returns false. For example, if the inputs are "tac” and "cat’, tl

Examples:

isReverse("tac", "cat") -> true

Your Answer:

Feedback

1 public boolean isReverse(String sl1, String s2) {
2  if <<Missing condition 1>>
3 return true;
4 else if <<Missing condition 2>>
5 return false;
6 else {
7 String slfirst = sl.substring(e, 1);
8 String s2last = s2.substring(s2.length() - 1);
9 return slfirst.equals(s2last) &&
10 isReverse(sl.substring(1), s2.substring(@, s2.length() -
1));
1}
12 }
13
Check my answer! Reset
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1.5.3. Recursion Programming Exercise: Decimal to Binary

X273: Recursion Programming Exercise: Decima

For function decToBinary , write the missing parts of the recursion case. This function should return a stri

for int variable num. Example: The binary equivalent of 13 may be found by repeatedly dividing 13 by 2. Sc

string "1101".

Examples:

decToBinary(13) -> "11e1"

Your Answer:

Feedback

1 public String decToBinary (int num) {

2 if (num < 2)

3 return Integer.toString(num);

4 else

5 return <<Missing recursive call>> + <<Missing calculation>>;
6
7

}

Check my answer! Reset
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Your feedback will qj
answer.
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01.06 Writing Practice Exercises

Due No Due Date Points 8 Submitting an external tool

01.06 Writing Practice Exercises

1.6. Writing Practice Exercises

1.6.1. Recursion Programming Exercise: Cannonballs

X274: Recursion Programming Exercise: Cannon

Spherical objects, such as cannonballs, can be stacked to form a pyramid with one cannonball at the top, s
of four cannonballs, sitting on top of a square composed of nine cannonballs, and so forth.

Given the following recursive function signature, write a recursive function that takes as its argument the
and returns the number of cannonballs it contains.

Examples:

cannonball(2) -> 5

Your Answer: Feedback
1 public int cannonball(int height) { Your feedback will a)
2 answer.
3
4}
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Check my answer! Reset

1.6.2. Recursion Programming Exercise: Check Palindrome

X275: Recursion Programming Exercise: Check 1

Write a recursive function named checkPalindrome that takes a string as input, and returns true if the stri
not a palindrome. A string is a palindrome if it reads the same forwards or backwards.

Recall that str.charAt(a) will return the character at position a in str. str.substring(a) will return
a to the end of str, while str.substring(a, b) will return the substring of str starting at position a

including) the character at position b.

Examples:

checkPalindrome("madam") -> true

Your Answer: Feedback
1 public boolean checkPalindrome(String s) { Your feedback will a)
2 answer.
3
4
5
6
7}
8
Check my answer! Reset
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1.6.3. Recursion Programming Exercise: Subset Sum

X276: Recursion Programming Exercise: Subset |

Write a recursive function that takes a start index, array of integers, and a target sum. Your goal is to find w
integers adds up to the target sum. The start index is initially O.
A target sum of O is true for any array.

Examples:

subsetSum(o, {2, 4, 8}, 10) -> true

Your Answer: Feedback
1 public boolean subsetSum(int start, int[] nums, int target) { Your feedback will aj
2 answer.
3}
4
Check my answer! Reset
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1.6.4. Recursion Programming Exercise: Pascal Triangle

X277: Recursion Programming Exercise: Pascal ']

Pascal’s triangle is a useful recursive definition that tells us the coefficients in the expansion of the polynoi
the triangle has a coordinate, given by the row it is on and its position in the row (which you could call a c
triangle is defined as the sum of the item above it and the item above it and to the left. If there is a positio
treat it as if we had a O there.

K

1 4 6 4 1
4, 5 10 10 5 1

Given the following recursive function signature, write the recursive function that takes a row and a colum
position in the triangle. Assume that the triangle starts at row 0 and column O.

Examples:
pascal(2, 1) -> 2

pascal(l, 2) -> @

Your Answer: Feedback
1 public int pascal(int row, int column) { Your feedback will apg
; answer.
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6 }

Check my answer! Reset
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1.7. Tracing Recursive Code

1.7.1. Tracing Recursive Code

When writing a recursive function, you should think in a top-down manner. Do not worry about how the recursive call
solves the sub-problem. Simply accept that it will solve it correctly. Use this result as though you had called some
library function, to correctly solve the original problem.

When you have to read or trace a recursive function, then you do need to consider how the function is doing its
work. Tracing a few recursive functions is a great way to learn how recursion behaves. But after you become
comfortable with tracing, you will rarely need to work through so many details again. You will begin to develop
confidence about how recursion works.

You know that information can be passed in (using a function parameter) from one recursive call to another, on ever
smaller problems, until a base case is reached in the winding phase. Then, a return value is passed back as the
series of recursive calls unwinds. Sometimes people forget about the “unwinding” phase.

= © & &

Suppose function a() has a call to function b().

a() b()

{ {
b(); c();
}

During the winding phase, any parameter passed through the recursive call flows forward until the base case is
reached. During the unwinding phase, the return value of the function (if there is one) flows backwards to the calling
copy of the function. In the following example, a recursive function to compute factorial has information flowing
forward during the winding phase, and backward during the unwinding phase.

= O & &

Suppose that we want to compute the value of factorial(5) using the following recursive factorial implementatio

Ant -I4'0-+r\n-;-\1/-in+ n\ S
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if (n <= 1)
return 1;

return n * factorial(n-1);

The recursive function may have information flow for more than one parameter. For example, a recursive function
that sums the values in an array recursively may pass the array itself and the index through the recursive call in the
winding phase and returns back the summed value so far in the unwinding phase.

= O & &

Now consider a simple recursive function to sum the elements of an array. The information flow passes the arr
index forward during the winding phase. The sum of the values is passed backward during the unwinding phas

int sum(int arr[], int n) {
if (n == 0) {
return 0;

}

return sum(arr, n - 1) + arr[n - 1];

arr[Z 4 6]
0 1
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1.7.1.1. A Domino Analogy

& © O &

Let's think about the domino effect in terms of recursion. When you stand up a bunch of dominos properly, p
first one causes all of the others to fall over one by one until the last domino is reached.

1 2 3
Domino(n) {

If(n == 1)
TipOver(1) //manually tip the domino over.

else{
Domino(n-1) //to tip the first (n-1) dominos over
TipOver(n) //the nth domino will be tipped over subsequently

This recursive model for the domino effect can be used as a template for the solution to all linear recursive
functions. Think of tipping over each domino as performing a further step of computation toward the final solution.
Remember these rules:

1. Since the first domino has to be tipped over manually, the solution for the base case is computed non-recursively.

2. Before any given domino can be tipped over, all preceding dominos have to be tipped over.

1.7.1.2. Towers of Hanoi

Here is another example of recursion, based on a famous puzzle called “Towers of Hanoi”. The natural algorithm to
solve this problem has multiple recursive calls. It cannot be rewritten easily using loops. “Towers of Hanoi” comes
from an ancient Vietnamese legend. A group of monks is tasked with moving a tower of 64 disks of different sizes
according to certain rules. The legend says that, when the monks will have finished moving all of the disks, the
world will end.
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(a) (b)

The Towers of Hanoi puzzle begins with three poles and n rings, where all rings start on the leftmost pole (labeled
Pole A). The rings each have a different size, and are stacked in order of decreasing size with the largest ring at the
bottom, as shown in part (a) of the figure. The problem is to move the rings from the leftmost pole to the middle pole
(labeled Pole B) in a series of steps. At each step the top ring on some pole is moved to another pole. What makes
this puzzle interesting is the limitation on where rings may be moved: A ring may never be moved on top of a
smaller ring.

How can you solve this problem? It is easy if you don’t think too hard about the details. Instead, consider that all
rings are to be moved from Pole A to Pole B. It is not possible to do this without first moving the bottom (largest) ring
to Pole B. To do that, Pole B must be empty, and only the bottom ring can be on Pole A. The remaining n» — 1 rings
must be stacked up in order on Pole C, as shown in part (b) of the figure. How can you do this? Assume that a
function X is available to solve the problem of moving the top n — 1 rings from Pole A to Pole C. Then move the
bottom ring from Pole A to Pole B. Finally, again use function X to move the remaining n — 1 rings from Pole C to
Pole B. In both cases, “function X” is simply the Towers of Hanoi function called on a smaller version of the
problem.

The secret to success is relying on the Towers of Hanoi algorithm to do the work for you. You need not be
concerned about the gory details of how the Towers of Hanoi subproblem will be solved. That will take care of itself
provided that two things are done. First, there must be a base case (what to do if there is only one ring) so that the
recursive process will not go on forever. Second, the recursive call to Towers of Hanoi can only be used to solve a
smaller problem, and then only one of the proper form (one that meets the original definition for the Towers of Hanoi
problem, assuming appropriate renaming of the poles).

Here is an implementation for the recursive Towers of Hanoi algorithm. Function move(start, goal) takes the top
ring from Pole start and moves it to Pole goal. If move were to print the values of its parameters, then the result of
calling TOHr would be a list of ring-moving instructions that solves the problem.

// Compute the moves to solve a Tower of Hanoi puzzle.

// Function move does (or prints) the actual move of a disk
// from one pole to another.

// n: The number of disks

// start: The start pole

// goal: The goal pole

// temp: The other pole

static void TOHr(int n, Pole start, Pole goal, Pole temp) {

if (n == @) { return; } // Base case

TOHr(n-1, start, temp, goal); // Recursive call: n-1 rings
move(start, goal); // Move bottom disk to goal
TOHr(n-1, temp, goal, start); // Recursive call: n-1 rings

}
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This next slideshow explains the solution to the Towers of Hanoi problem.
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01.08 Tracing Practice Exercises

Due No Due Date Points 6 Submitting an external tool

01.08 Tracing Practice Exercises

1.8. Tracing Practice Exercises

1.8.1. Forward Flow Tracing Exercises

Practicing Recursion Tracing: Forward Flow Current score: O out of
5
Consider the following function: Answer
Need help?

What is the return of calling mystery(2,0)?

(Either write a number, or write "infinite recursion".)

L]
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1.8.2. Backward Flow Tracing Exercises

1.8.3. Find Error Tracing Exercises
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1.8.4. Two Recursive Calls Tracing Exercises
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1.8.5. How Many Times Tracing Exercises
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1.8.6. Harder Tracing Exercises

49
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01.09 Summary Exercises

Due No Due Date Points 1 Submitting an external tool

01.09 Summary Exercises
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1.9. Summary Exercises

1.9.1. Summary Questions

Practicing Recursion: Summary Questions Current score: O out of
5
Answer TRUE or FALSE. Answer

A recursive function is invoked differently from a non-recursive method.

OT
e Need help?

O False
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Chapter 2: Algorithm Analysis

OpenDSA License

OpenDSA is Copyright © 2013-2016 by Ville Karavirta and Cliff Shaffer.
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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2.1. Chapter Introduction

How long will it take to process the company payroll once we complete our planned merger? Should | buy a new
payroll program from vendor X or vendor Y? If a particular program is slow, is it badly implemented or is it solving a
hard problem? Questions like these ask us to consider the difficulty of a problem, or the relative efficiency of two or
more approaches to solving a problem.

This chapter introduces the motivation, basic notation, and fundamental techniques of algorithm analysis. We focus
on a methodology known as asymptotic algorithm analysis, or simply asymptotic analysis. Asymptotic analysis
attempts to estimate the resource consumption of an algorithm. It allows us to compare the relative costs of two or
more algorithms for solving the same problem. Asymptotic analysis also gives algorithm designers a tool for
estimating whether a proposed solution is likely to meet the resource constraints for a problem before they
implement an actual program. After reading this chapter, you should understand

the concept of a growth rate, the rate at which the cost of an algorithm grows as the size of its input grows;

the concept of an upper bound and lower bound for a growth rate, and how to estimate these bounds for a
simple program, algorithm, or problem; and

the difference between the cost of an algorithm (or program) and the cost of a problem.

The chapter concludes with a brief discussion of the practical difficulties encountered when empirically measuring
the cost of a program, and some principles for code tuning to improve program efficiency.
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02.02 Problems, Algorithms, and Programs

Due No Due Date Points 1 Submitting an external tool

02.02 Problems, Algorithms, and Programs

2.2. Problems, Algorithms, and Programs

2.2.1. Problems, Algorithms, and Programs

2.2.1.1. Problems

Programmers commonly deal with problems, algorithms, and computer programs. These are three distinct
concepts.

As your intuition would suggest, a problem is a task to be performed. It is best thought of in terms of inputs and
matching outputs. A problem definition should not include any constraints on how the problem is to be solved. The
solution method should be developed only after the problem is precisely defined and thoroughly understood.
However, a problem definition should include constraints on the resources that may be consumed by any
acceptable solution. For any problem to be solved by a computer, there are always such constraints, whether stated
or implied. For example, any computer program may use only the main memory and disk space available, and it
must run in a “reasonable” amount of time.

Problems can be viewed as functions in the mathematical sense. A function is a matching between inputs (the
domain) and outputs (the range). An input to a function might be a single value or a collection of information. The
values making up an input are called the parameters of the function. A specific selection of values for the
parameters is called an instance of the problem. For example, the input parameter to a sorting function might be an
array of integers. A particular array of integers, with a given size and specific values for each position in the array,
would be an instance of the sorting problem. Different instances might generate the same output. However, any
problem instance must always result in the same output every time the function is computed using that particular
input.

This concept of all problems behaving like mathematical functions might not match your intuition for the behavior of
computer programs. You might know of programs to which you can give the same input value on two separate
occasions, and two different outputs will result. For example, if you type date to a typical Linux command line
prompt, you will get the current date. Naturally the date will be different on different days, even though the same
command is given. However, there is obviously more to the input for the date program than the command that you
type to run the program. The date program computes a function. In other words, on any particular day there can
only be a single answer returned by a properly running date program on a completely specified input. For all
computer programs, the output is completely determined by the program’s full set of inputs. Even a “random number
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around this by accepting a random input from a physical process beyond the user’s control). The limits to what
functions can be implemented by programs is part of the domain of Computability.

2.2.1.2. Algorithms

An algorithm is a method or a process followed to solve a problem. If the problem is viewed as a function, then an
algorithm is an implementation for the function that transforms an input to the corresponding output. A problem can
be solved by many different algorithms. A given algorithm solves only one problem (i.e., computes a particular
function). OpenDSA modules cover many problems, and for several of these problems we will see more than one
algorithm. For the important problem of sorting there are over a dozen commonly known algorithms!

The advantage of knowing several solutions to a problem is that solution A might be more efficient than solution B
for a specific variation of the problem, or for a specific class of inputs to the problem, while solution B might be more
efficient than A for another variation or class of inputs. For example, one sorting algorithm might be the best for
sorting a small collection of integers (which is important if you need to do this many times). Another might be the
best for sorting a large collection of integers. A third might be the best for sorting a collection of variable-length
strings.

By definition, something can only be called an algorithm if it has all of the following properties.

1. It must be correct. In other words, it must compute the desired function, converting each input to the correct
output. Note that every algorithm implements some function, because every algorithm maps every input to some
output (even if that output is a program crash). At issue here is whether a given algorithm implements the
intended function.

2. It is composed of a series of concrete steps. Concrete means that the action described by that step is completely
understood — and doable — by the person or machine that must perform the algorithm. Each step must also be
doable in a finite amount of time. Thus, the algorithm gives us a “recipe” for solving the problem by performing a
series of steps, where each such step is within our capacity to perform. The ability to perform a step can depend
on who or what is intended to execute the recipe. For example, the steps of a cookie recipe in a cookbook might
be considered sufficiently concrete for instructing a human cook, but not for programming an automated cookie-
making factory.

3. There can be no ambiguity as to which step will be performed next. Often it is the next step of the algorithm
description. Selection (e.g., the if statement) is normally a part of any language for describing algorithms.
Selection allows a choice for which step will be performed next, but the selection process is unambiguous at the
time when the choice is made.

4. It must be composed of a finite number of steps. If the description for the algorithm were made up of an infinite
number of steps, we could never hope to write it down, nor implement it as a computer program. Most languages
for describing algorithms (including English and “pseudocode”) provide some way to perform repeated actions,
known as iteration. Examples of iteration in programming languages include the while and for loop constructs.
Iteration allows for short descriptions, with the number of steps actually performed controlled by the input.

5. It must terminate. In other words, it may not go into an infinite loop.

2.2.1.3. Programs
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We often think of a computer program as an instance, or concrete representation, of an algorithm in some
programming language. Algorithms are usually presented in terms of programs, or parts of programs. Naturally,
there are many programs that are instances of the same algorithm, because any modern computer programming
language can be used to implement the same collection of algorithms (although some programming languages can
make life easier for the programmer). To simplify presentation, people often use the terms “algorithm” and “program”
interchangeably, despite the fact that they are really separate concepts. By definition, an algorithm must provide
sufficient detail that it can be converted into a program when needed.

The requirement that an algorithm must terminate means that not all computer programs meet the technical
definition of an algorithm. Your operating system is one such program. However, you can think of the various tasks
for an operating system (each with associated inputs and outputs) as individual problems, each solved by specific
algorithms implemented by a part of the operating system program, and each one of which terminates once its
output is produced.

2.2.1.4. Summary

To summarize: A problem is a function or a mapping of inputs to outputs. An algorithm is a recipe for solving a
problem whose steps are concrete and unambiguous. Algorithms must be correct, of finite length, and must
terminate for all inputs. A program is an instantiation of an algorithm in a programming language. The following
slideshow should help you to visualize the differences.
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Here is a visual summary showing how to differentiate between a problem, a problem instance, an algorit
program.

2.2.1.5. Summary Questions
57
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02.03 Comparing Algorithms
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02.03 Comparing Algorithms

2.3. Comparing Algorithms

2.3.1. Comparing Algorithms

2.3.1.1. Introduction

How do you compare two algorithms for solving some problem in terms of efficiency? We could implement both
algorithms as computer programs and then run them on a suitable range of inputs, measuring how much of the
resources in question each program uses. This approach is often unsatisfactory for four reasons. First, there is the
effort involved in programming and testing two algorithms when at best you want to keep only one. Second, when
empirically comparing two algorithms there is always the chance that one of the programs was “better written” than
the other, and therefore the relative qualities of the underlying algorithms are not truly represented by their
implementations. This can easily occur when the programmer has a bias regarding the algorithms. Third, the choice
of empirical test cases might unfairly favor one algorithm. Fourth, you could find that even the better of the two
algorithms does not fall within your resource budget. In that case you must begin the entire process again with yet
another program implementing a new algorithm. But, how would you know if any algorithm can meet the resource
budget? Perhaps the problem is simply too difficult for any implementation to be within budget.

These problems can often be avoided by using asymptotic analysis. Asymptotic analysis measures the efficiency of
an algorithm, or its implementation as a program, as the input size becomes large. It is actually an estimating
technique and does not tell us anything about the relative merits of two programs where one is always “slightly
faster” than the other. However, asymptotic analysis has proved useful to computer scientists who must determine if
a particular algorithm is worth considering for implementation.

The critical resource for a program is most often its running time. However, you cannot pay attention to running time
alone. You must also be concerned with other factors such as the space required to run the program (both main
memory and disk space). Typically you will analyze the time required for an algorithm (or the instantiation of an
algorithm in the form of a program), and the space required for a data structure.

Many factors affect the running time of a program. Some relate to the environment in which the program is compiled
and run. Such factors include the speed of the computer’'s CPU, bus, and peripheral hardware. Competition with
other users for the computer’s (or the network’s) resources can make a program slow to a crawl. The programming
language and the quality of code generated by a particular compiler can have a significant effect. The “coding
efficiency” of the programmer who converts the algorithm to a program can have a tremendous impact as well.

59



If you need to get a program working within time and space constraints on a particular computer, all of these factors
can be relevant. Yet, none of these factors address the differences between two algorithms or data structures. To be
fair, if you want to compare two programs derived from two algorithms for solving the same problem, they should
both be compiled with the same compiler and run on the same computer under the same conditions. As much as
possible, the same amount of care should be taken in the programming effort devoted to each program to make the
implementations “equally efficient”. In this sense, all of the factors mentioned above should cancel out of the
comparison because they apply to both algorithms equally.

If you truly wish to understand the running time of an algorithm, there are other factors that are more appropriate to
consider than machine speed, programming language, compiler, and so forth. Ideally we would measure the running
time of the algorithm under standard benchmark conditions. However, we have no way to calculate the running time
reliably other than to run an implementation of the algorithm on some computer. The only alternative is to use some
other measure as a surrogate for running time.

2.3.1.2. Basic Operations and Input Size

Of primary consideration when estimating an algorithm’s performance is the number of basic operations required
by the algorithm to process an input of a certain size. The terms “basic operations” and “size” are both rather vague
and depend on the algorithm being analyzed. Size is often the number of inputs processed. For example, when
comparing sorting algorithms the size of the problem is typically measured by the number of records to be sorted. A
basic operation must have the property that its time to complete does not depend on the particular values of its
operands. Adding or comparing two integer variables are examples of basic operations in most programming
languages. Summing the contents of an array containing n integers is not, because the cost depends on the value
of n (i.e., the size of the input).

Example 2.3.1

Consider a simple algorithm to solve the problem of finding the largest value in an array of n integers. The
algorithm looks at each integer in turn, saving the position of the largest value seen so far. This algorithm is called
the largest-value sequential search and is illustrated by the following function:

// Return position of largest value in integer array A
static int largest(int[] A) {
int currlarge = 0; // Position of largest element seen
for (int i=1; i<A.length; i++) { // For each element
if (A[currlarge] < A[i]) { // 1if A[i] 1is larger
currlarge = i; // remember its position
}
}

return currlarge; // Return largest position

}

Here, the size of the problem is A.length, the number of integers stored in array A. The basic operation is to
compare an integer’s value to that of the largest value seen so far. It is reasonable to assume that it takes a fixed
amount of time to do one such comparison. reaardlesg@f the value of the two inteaers or their positions in the



array.

Because the most important factor affecting running time is normally size of the input, for a given input size n we
often express the time T to run the algorithm as a function of n, written as T (n). We will always assume T(n) is a
non-negative value.

Let us call ¢ the amount of time required to compare two integers in function largest. We do not care right now
what the precise value of ¢ might be. Nor are we concerned with the time required to increment variable 4
because this must be done for each value in the array, or the time for the actual assignment when a larger value
is found, or the little bit of extra time taken to initialize currlarge. We just want a reasonable approximation for
the time taken to execute the algorithm. The total time to run largest is therefore approximately cn, because we
must make n comparisons, with each comparison costing c¢ time. We say that function largest (and by
extension, the largest-value sequential search algorithm for any typical implementation) has a running time
expressed by the equation

T(n) = cn.

This equation describes the growth rate for the running time of the largest-value sequential search algorithm.

Example 2.3.2

The running time of a statement that assigns the first value of an integer array to a variable is simply the time
required to copy the value of the first array value. We can assume this assignment takes a constant amount of
time regardless of the value. Let us call ¢; the amount of time necessary to copy an integer. No matter how large
the array on a typical computer (given reasonable conditions for memory and array size), the time to copy the
value from the first position of the array is always c;. Thus, the equation for this algorithm is simply

T(n) =,

indicating that the size of the input n has no effect on the running time. This is called a constant running time.

Example 2.3.3

Consider the following code:

sum = 9;
for (i=1; i<=n; i++) {
for (j=1; j<=n; j++) {
sum++;
¥
}

What is the running time for this code fragment? Clearly it takes longer to run when n is larger. The basic
operation in this example is the increment operation for variable sum. We can assume that incrementing takes
constant time; call this time c;. (We can ignore the tigye required to initialize sum, and to increment the loop



counters i and j. In practice, these costs can safely be bundled into time ¢;.) The total number of increment

operations is n?. Thus, we say that the running time is T(n) = con?.

2.3.1.3. Growth Rates

The growth rate for an algorithm is the rate at which the cost of the algorithm grows as the size of its input grows.
The following figure shows a graph for six equations, each meant to describe the running time for a particular
program or algorithm. A variety of growth rates that are representative of typical algorithms are shown.
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Figure 2.3.2: Two views of a graph illustrating the growth rates for six equations. The bottom view shows in detail
the lower-left portion of the top view. The horizontal axis represents input size. The vertical axis can represent time,
space, or any other measure of cost.

The two equations labeled 10n and 20n are graphed by straight lines. A growth rate of cn (for ¢ any positive
constant) is often referred to as a linear growth rate or running time. This means that as the value of n grows, the
running time of the algorithm grows in the same proportion. Doubling the value of n roughly doubles the running
time. An algorithm whose running-time equation has a highest-order term containing a factor of »2 is said to have a
quadratic growth rate. In the figure, the line labeled 2n? represents a quadratic growth rate. The line labeled 2~
represents an exponential growth rate. This name comes from the fact that n appears in the exponent. The line
labeled n! also grows exponentially.

As you can see from the figure, the difference between an algorithm whose running time has cost T(n) = 10n and
another with cost T(n) = 2n? becomes tremendous as n grows. For n > 5, the algorithm with running time
T(n) = 2n? is already much slower. This is despite the fact that 10n has a greater constant factor than 2n2.
Comparing the two curves marked 20n and 2n? shows that changing the constant factor for one of the equations
only shifts the point at which the two curves cross. For n > 10, the algorithm with cost T(n) = 2n? is slower than the
algorithm with cost T(n) = 20n. This graph also shows that the equation T(n) = 5bnlogn grows somewhat more
quickly than both T(n) = 10n and T(n) = 20n, but not nearly so quickly as the equation T(n) = 2n?. For constants
a,b>1,n* grows faster than either log’n or logn’. Finally, algorithms with cost T(n) =2" or T(n)=n! are
prohibitively expensive for even modest values of n. Note that for constants a,b > 1,a" grows faster than n®.

We can get some further insight into relative growth rates for various algorithms from the following table. Most of the
growth rates that appear in typical algorithms are shown, along with some representative input sizes. Once again,
we see that the growth rate has a tremendous effect on the resources consumed by an algorithm.

Table 2.3.1

Costs for representative growth rates.

n loglogn | logn | n nlogn n? | nd 2"

16 2 4 | 2% | 4.2 =20 | 28 212 216
256 3 8 | 28 | 8.28 =2t [216] 224 | 226
1024 | ~3.3 | 10 |29 ]10-20 ~ 28 220 | 2% | 2102
64K 4 16 |2 | 16.210 =220 | 232 | 248 | p04K

IM | ~43 | 20 |2% [20.2%0 ~ 2% | 2%0 | 260 | oIM
1G | ~49 | 30 |23 |30.2%0 ~ 235|200 2% | 9lG

PraCtiCing Comparing Growth Rates Exercise Current score: O out of
63 =



You are given this set of growth functions: n!, 2", 2n?, 5nlogn, 20n, 10n Answer

For the growth function 10n, type a value (a positive integer) for which this function is Check Answer

the most efficient of the six. If there is no integer value for which it is most efficent,

type "none".

Need help?

L] 1d like a hint

2.3.2. Growth Rates Ordering Exercise

Practicing Growth Rates Ordering Exercise Current score: O out of
5
Your task in this exercise is to put the following functions into their appropriate Answer

positions in the list so that finally the list will contain all the functions in ascending

order of their growth rates. You can swap two functions by clicking on them. Check Answer

Need help?

I'd like a hint

n? 2log®n nloglogn 27 oV 2"
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2.4. Best, Worst, and Average Cases

2.4.1. Best, Worst, and Average Cases

= O & &

Consider the problem of finding the factorial of n.

Factorial Problem

& © O &

For some algorithms, different inputs of a given size require different amounts of time. For example, co
problem of searching an array containing n integers to find the one with a particular value K (assume that .

exactly once in the array).

Sequential Search
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When analyzing an algorithm, should we study the best, worst, or average case? Normally we are not interested in
the best case, because this might happen only rarely and generally is too optimistic for a fair characterization of the
algorithm’s running time. In other words, analysis based on the best case is not likely to be representative of the
behavior of the algorithm. However, there are rare instances where a best-case analysis is useful—in particular,
when the best case has high probability of occurring. The Shellsort and Quicksort algorithms both can take
advantage of the best-case running time of Insertion Sort to become more efficient.

How about the worst case? The advantage to analyzing the worst case is that you know for certain that the
algorithm must perform at least that well. This is especially important for real-time applications, such as for the
computers that monitor an air traffic control system. Here, it would not be acceptable to use an algorithm that can
handle n airplanes quickly enough most of the time, but which fails to perform quickly enough when all n airplanes
are coming from the same direction.

For other applications—particularly when we wish to aggregate the cost of running the program many times on
many different inputs—worst-case analysis might not be a representative measure of the algorithm’s performance.
Often we prefer to know the average-case running time. This means that we would like to know the typical behavior
of the algorithm on inputs of size n. Unfortunately, average-case analysis is not always possible. Average-case
analysis first requires that we understand how the actual inputs to the program (and their costs) are distributed with
respect to the set of all possible inputs to the program. For example, it was stated previously that the sequential
search algorithm on average examines half of the array values. This is only true if the element with value K is
equally likely to appear in any position in the array. If this assumption is not correct, then the algorithm does not
necessarily examine half of the array values in the average case.

The characteristics of a data distribution have a significant effect on many search algorithms, such as those based
on hashing and search trees such as the BST. Incorrect assumptions about data distribution can have disastrous
consequences on a program’s space or time performance. Unusual data distributions can also be used to
advantage, such as is done by self-organizing lists.

In summary, for real-time applications we are likely to prefer a worst-case analysis of an algorithm. Otherwise, we
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02.05 Faster Computer, or Faster Algorithm?
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02.05 Faster Computer, or Faster Algorithm?

2.5. Faster Computer, or Faster Algorithm?

2.5.1. Faster Computer, or Faster Algorithm?

Imagine that you have a problem to solve, and you know of an algorithm whose running time is proportional to n?
where n is @ measure of the input size. Unfortunately, the resulting program takes ten times too long to run. If you
replace your current computer with a new one that is ten times faster, will the n? algorithm become acceptable? If
the problem size remains the same, then perhaps the faster computer will allow you to get your work done quickly
enough even with an algorithm having a high growth rate. But a funny thing happens to most people who get a
faster computer. They don’t run the same problem faster. They run a bigger problem! Say that on your old computer
you were content to sort 10,000 records because that could be done by the computer during your lunch break. On
your new computer you might hope to sort 100,000 records in the same time. You won’t be back from lunch any
sooner, so you are better off solving a larger problem. And because the new machine is ten times faster, you would
like to sort ten times as many records.

If your algorithm’s growth rate is linear (i.e., if the equation that describes the running time on input size n is
T(n) = cn for some constant c), then 100,000 records on the new machine will be sorted in the same time as 10,000
records on the old machine. If the algorithm’s growth rate is greater than cn, such as c¢;n?, then you will not be able
to do a problem ten times the size in the same amount of time on a machine that is ten times faster.

How much larger a problem can be solved in a given amount of time by a faster computer? Assume that the new
machine is ten times faster than the old. Say that the old machine could solve a problem of size n in an hour. What
is the largest problem that the new machine can solve in one hour? The following table shows how large a problem
can be solved on the two machines for five running-time functions.

Table 2.5.1

The increase in problem size that can be run in a fixed period of time on a computer that is ten times faster. The
first column lists the right-hand sides for five growth rate equations. For the purpose of this example, arbitrarily
assume that the old machine can run 10,000 basic operations in one hour. The second column shows the
maximum value for n that can be run in 10,000 basic operations on the old machine. The third column shows the
value for n/, the new maximum size for the problem that can be run in the same time on the new machine that is
ten times faster. Variable n’ is the greatest size for the problem that can run in 100,000 basic operations. The
fourth column shows how the size of n changed to become n’ on the new machine. The fifth column shows the
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f(n) n n' | Change n'/n
10n 1000 | 10,000 | n' = 10n 10
20n 500 5000 | n' = 10n 10
5nlogn | 250 | 1842 | 4/10n <n' < 10n | 7.37
2n? 70| 223 | n/ = /T0n 3.16
2n 13 16 [n' =n+3 ——

This table illustrates many important points. The first two equations are both linear; only the value of the constant
factor has changed. In both cases, the machine that is ten times faster gives an increase in problem size by a factor
of ten. In other words, while the value of the constant does affect the absolute size of the problem that can be
solved in a fixed amount of time, it does not affect the improvement in problem size (as a proportion to the original
size) gained by a faster computer. This relationship holds true regardless of the algorithm’s growth rate: Constant
factors never affect the relative improvement gained by a faster computer.

An algorithm with time equation T(n) = 2n?> does not receive nearly as great an improvement from the faster
machine as an algorithm with linear growth rate. Instead of an improvement by a factor of ten, the improvement is
only the square root of that: \/10 ~ 3.16. Thus, the algorithm with higher growth rate not only solves a smaller
problem in a given time in the first place, it also receives less of a speedup from a faster computer. As computers
get ever faster, the disparity in problem sizes becomes ever greater.

The algorithm with growth rate T(n) = 5nlogn improves by a greater amount than the one with quadratic growth
rate, but not by as great an amount as the algorithms with linear growth rates.

Note that something special happens in the case of the algorithm whose running time grows exponentially. If you
look at its plot on a graph, the curve for the algorithm whose time is proportional to 2™ goes up very quickly as n
grows. The increase in problem size on the machine ten times as fast is about n + 3 (to be precise, it is n + log, 10).
The increase in problem size for an algorithm with exponential growth rate is by a constant addition, not by a
multiplicative factor. Because the old value of n was 13, the new problem size is 16. If next year you buy another
computer ten times faster yet, then the new computer (100 times faster than the original computer) will only run a
problem of size 19. If you had a second program whose growth rate is 2" and for which the original computer could
run a problem of size 1000 in an hour, than a machine ten times faster can run a problem only of size 1003 in an
hour! Thus, an exponential growth rate is radically different than the other growth rates shown in the table. The
significance of this difference is an important topic in computational complexity theory.

Instead of buying a faster computer, consider what happens if you replace an algorithm whose running time is
proportional to n? with a new algorithm whose running time is proportional to nlogn. In a graph relating growth rate
functions to input size, a fixed amount of time would appear as a horizontal line. If the line for the amount of time
available to solve your problem is above the point at which the curves for the two growth rates in question meet,
then the algorithm whose running time grows less quickly is faster. An algorithm with running time Tn = n? requires
1024 x 1024 = 1,048,576 time steps for an input of size n = 1024. An algorithm with running time T(n) = nlogn
requires 1024 x 10 = 10,240 time steps for an input of size n = 1024, which is an improvement of much more than a
factor of ten when compared to the algorithm with running time T(n) = n?. Because n? > 10nlogn whenever n > 58,
if the typical problem size is larger than 58 for this example, then you would be much better off changing algorithms
instead of buying a computer ten times faster. Furthermore, when you do buy a faster computer, an algorithm with a
slower growth rate provides a greater benefit in terms of larger problem size that can run in a certain time on the
new computer.
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02.06 Asymptotic Analysis and Upper Bounds

2.6. Asymptotic Analysis and Upper Bounds

2.6.1. Asymptotic Analysis and Upper Bounds
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Figure 2.6.2: Two views of a graph illustrating the growth rates for six equations. The bottom view shows in detail
the lower-left portion of the top view. The horizontal axis represents input size. The vertical axis can represent time,
space, or any other measure of cost.

Despite the larger constant for the curve labeled 10n in the figure above, 2n? crosses it at the relatively small value
of n = 5. What if we double the value of the constant in front of the linear equation? As shown in the graph, 20n is
surpassed by 2n? once n = 10. The additional factor of two for the linear growth rate does not much matter. It only
doubles the z-coordinate for the intersection point. In general, changes to a constant factor in either equation only
shift where the two curves cross, not whether the two curves cross.

When you buy a faster computer or a faster compiler, the new problem size that can be run in a given amount of
time for a given growth rate is larger by the same factor, regardless of the constant on the running-time equation.
The time curves for two algorithms with different growth rates still cross, regardless of their running-time equation
constants. For these reasons, we usually ignore the constants when we want an estimate of the growth rate for the
running time or other resource requirements of an algorithm. This simplifies the analysis and keeps us thinking
about the most important aspect: the growth rate. This is called asymptotic algorithm analysis. To be precise,
asymptotic analysis refers to the study of an algorithm as the input size “gets big” or reaches a limit (in the calculus
sense). However, it has proved to be so useful to ignore all constant factors that asymptotic analysis is used for
most algorithm comparisons.

In rare situations, it is not reasonable to ignore the constants. When comparing algorithms meant to run on small
values of n, the constant can have a large effect. For example, if the problem requires you to sort many collections
of exactly five records, then a sorting algorithm designed for sorting thousands of records is probably not
appropriate, even if its asymptotic analysis indicates good performance. There are rare cases where the constants
for two algorithms under comparison can differ by a factor of 1000 or more, making the one with lower growth rate
impractical for typical problem sizes due to its large constant. Asymptotic analysis is a form of “back of the envelope”
estimation for algorithm resource consumption. It provides a simplified model of the running time or other resource
needs of an algorithm. This simplification usually helps you understand the behavior of your algorithms. Just be
aware of the limitations to asymptotic analysis in the rare situation where the constant is important.

2.6.1.1. Upper Bounds

Several terms are used to describe the running-time equation for an algorithm. These terms—and their associated
symbols—indicate precisely what aspect of the algorithm’s behavior is being described. One is the upper bound for
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Because the phrase “has an upper bound to its growth rate of f(n)” is long and often used when discussing
algorithms, we adopt a special notation, called big-Oh notation. If the upper bound for an algorithm’s growth rate
(for, say, the worst case) is (f(n)), then we would write that this algorithm is “in the set O(f(n)) in the worst case” (or
just “in O(f(n)) in the worst case”). For example, if n> grows as fast as T(n) (the running time of our algorithm) for
the worst-case input, we would say the algorithm is “in O(n?) in the worst case”.

The following is a precise definition for an upper bound. T(n) represents the true running time of the algorithm. f(n)
is some expression for the upper bound.

For T(n) a non-negatively valued function, T(n) is in set O(f(n)) if there exist two positive constants ¢
and ny such that T(n) < cf(n) forall n > n,.

Constant ng is the smallest value of n for which the claim of an upper bound holds true. Usually ny is small, such as
1, but does not need to be. You must also be able to pick some constant ¢, but it is irrelevant what the value for ¢
actually is. In other words, the definition says that for all inputs of the type in question (such as the worst case for all
inputs of size n) that are large enough (i.e., n > ny), the algorithm always executes in less than or equal to cf(n)
steps for some constant c.

Example 2.6.1

Consider the sequential search algorithm for finding a specified value in an array of integers. If visiting and
examining one value in the array requires ¢, steps where ¢, is a positive number, and if the value we search for
has equal probability of appearing in any position in the array, then in the average case T(n) = ¢;n/2. For all
values of n > 1, ¢sn/2 < ¢sn. Therefore, by the definition, T(n) is in O(n) forny =1 and ¢ = ¢;.

Example 2.6.2
For a particular algorithm, T(n) = ¢;n? + cyn in the average case where ¢; and ¢, are positive numbers. Then,

2 2 2 2
an” +cn < cn” +can’ < (e1 +e2)n

forall n > 1. So, T(n) < cn?® for ¢ = ¢; + ¢2, and ny = 1. Therefore, T(n) is in O(n?) by the second definition.

Example 2.6.3

Assigning the value from the first position of an array to a variable takes constant time regardless of the size of
the array. Thus, T(n) = ¢ (for the best, worst, and average cases). We could say in this case that T(n) is in O(c).
However, it is traditional to say that an algorithm whose running time has a constant upper bound is in O(1).

If someone asked you out of the blue “Who is the best?” your natural reaction should be to reply “Best at what?” In
the same way, if you are asked “What is the growth rate of this algorithm”, you would need to ask “When? Best
case? Average case? Or worst case?” Some algorithms have the same behavior no matter which input instance of
a given size that they receive. An example is finding the maximum in an array of integers. But for many algorithms, it
makes a big difference which particular input of a given size is involved, such as when searching an unsorted array
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specific class of inputs of size n. We measure this upper bound nearly always on the best-case, average-case, or
worst-case inputs. Thus, we cannot say, “this algorithm has an upper bound to its growth rate of n?” because that is
an incomplete statement. We must say something like, “this algorithm has an upper bound to its growth rate of n? in
the average case’.

Knowing that something is in O(f(n)) says only how bad things can be. Perhaps things are not nearly so bad.
Because sequential search is in O(n) in the worst case, it is also true to say that sequential search is in O(n?). But
sequential search is practical for large n in a way that is not true for some other algorithms in O(n?). We always
seek to define the running time of an algorithm with the tightest (lowest) possible upper bound. Thus, we prefer to
say that sequential search is in O(n). This also explains why the phrase “is in O(f(n))” or the notation “c O(f(n))” is
used instead of “is O(f(n))” or “= O(f(n))”. There is no strict equality to the use of big-Oh notation. O(n) is in O(n?),
but O(n?) is not in O(n).

2.6.1.2. Simplifying Rules

Once you determine the running-time equation for an algorithm, it really is a simple matter to derive the big-Oh
expressions from the equation. You do not need to resort to the formal definitions of asymptotic analysis. Instead,
you can use the following rules to determine the simplest form.

1. If £(n) is in O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).

2. If f(n) is in O(kg(n)) for any constant k > 0, then f(n) is in O(g(n)).

3. If fi(n) is in O(g1(n)) and f(n) is in O(gz2(n)), then fi(n) + f2(n) is in O(max(g1(n), g2(n))).-
4.1f f1(n) is in O(g1(n)) and fo(n) is in O(gs(n)), then £1(n)f2(n) is in O(gy (n)ga (n)).

The first rule says that if some function g(n) is an upper bound for your cost function, then any upper bound for g(n)
is also an upper bound for your cost function.

The significance of rule (2) is that you can ignore any multiplicative constants in your equations when using big-Oh
notation.

Rule (3) says that given two parts of a program run in sequence (whether two statements or two sections of code),
you need consider only the more expensive part.

Rule (4) is used to analyze simple loops in programs. If some action is repeated some number of times, and each
repetition has the same cost, then the total cost is the cost of the action multiplied by the number of times that the
action takes place.

Taking the first three rules collectively, you can ignore all constants and all lower-order terms to determine the
asymptotic growth rate for any cost function. The advantages and dangers of ignoring constants were discussed
near the beginning of this section. Ignoring lower-order terms is reasonable when performing an asymptotic
analysis. The higher-order terms soon swamp the lower-order terms in their contribution to the total cost as (n)
becomes larger. Thus, if T(n) = 3n + 5n?, then T(n) is in O(n*). The n? term contributes relatively little to the total
cost for large n.

From now on, we will use these simplifying rules when discussing the cost for a program or algorithm.
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2.6.1.4. Summary
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A mistake that people often make is to confuse the upper bound and the worst case.

Costs for all inputs of an arbitrary (but fixed) size $n$ for three representative algorith
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Costs, as $n$ grows, for some representative algorithms
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2.6.1.5. Practice Questions
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02.07 Lower Bounds and Theta Notation

2.7. Lower Bounds and © Notation

2.7.1. Lower Bounds and Theta Notation

2.7.1.1. Lower Bounds

Big-Oh notation describes an upper bound. In other words, big-Oh notation states a claim about the greatest
amount of some resource (usually time) that is required by an algorithm for some class of inputs of size n (typically
the worst such input, the average of all possible inputs, or the best such input).

Similar notation is used to describe the least amount of a resource that an algorithm needs for some class of input.
Like big-Oh notation, this is a measure of the algorithm’s growth rate. Like big-Oh notation, it works for any
resource, but we most often measure the least amount of time required. And again, like big-Oh notation, we are
measuring the resource required for some particular class of inputs: the worst-, average-, or best-case input of size

n.

The lower bound for an algorithm (or a problem, as explained later) is denoted by the symbol 2, pronounced “big-
Omega” or just “Omega”. The following definition for Q is symmetric with the definition of big-Oh.

For T(n) a non-negatively valued function, T(n) is in set Q(g(n)) if there exist two positive constants ¢
and ny such that T(n) > cg(n) foralln > ny. 1

Example 2.7.1
Assume T(n) = c1n® + can for ¢; and ¢, > 0. Then,
cein® + can > en?
foralln > 1. So, T(n) > en? for ¢ = ¢; and ny = 1. Therefore, T(n) is in Q(n?) by the definition.
It is also true that the equation of the example above is in Q(n). However, as with big-Oh notation, we wish to get the
“tightest” (for Q notation, the largest) bound possible. Thus, we prefer to say that this running time is in Q(n?).

Recall the sequential search algorithm to find a value K within an array of integers. In the average and worst cases
this algorithm is in Q(n), because in both the average and,gvorst cases we must examine at least cn values (where ¢



is 1/2 in the average case and 1 in the worst case).

1
An alternate (non-equivalent) definition for Q is

T(n) is in the set Q(g(n)) if there exists a positive constant ¢ such that T(n) > cg(n) for an infinite
number of values for n.

This definition says that for an “interesting” number of cases, the algorithm takes at least cg(n) time. Note that
this definition is not symmetric with the definition of big-Oh. For g(n) to be a lower bound, this definition does
not require that T(n) > cg(n) for all values of n greater than some constant. It only requires that this happen
often enough, in particular that it happen for an infinite number of values for n. Motivation for this alternate
definition can be found in the following example.

Assume a particular algorithm has the following behavior:

T(n) = n foralloddn > 1
~ | n?/100 forallevenn >0

From this definition, n? /100 > Wlon2 for all even n > 0. So, T(n) > cn? for an infinite number of values of n (i.e.,

for all even n) for ¢ = 1/100. Therefore, T(n) is in Q(n?) by the definition.

For this equation for T(n), it is true that all inputs of size n take at least cn time. But an infinite number of inputs
of size n take cn? time, so we would like to say that the algorithm is in Q(n?). Unfortunately, using our first
definition will yield a lower bound of Q(n) because it is not possible to pick constants ¢ and ny, such that
T(n) > cn? for all n > ny. The alternative definition does result in a lower bound of Q(n?) for this algorithm,
which seems to fit common sense more closely. Fortunately, few real algorithms or computer programs display
the pathological behavior of this example. Our first definition for Q generally yields the expected result.

As you can see from this discussion, asymptotic bounds notation is not a law of nature. It is merely a powerful
modeling tool used to describe the behavior of algorithms.

2.7.1.2. Theta Notation

The definitions for big-Oh and Q give us ways to describe the upper bound for an algorithm (if we can find an
equation for the maximum cost of a particular class of inputs of size n) and the lower bound for an algorithm (if we
can find an equation for the minimum cost for a particular class of inputs of size n). When the upper and lower
bounds are the same within a constant factor, we indicate this by using © (big-Theta) notation. An algorithm is said
to be ©(h(n)) ifitis in O(h(n)) and itis in Q(h(n)). Note that we drop the word “in” for @ notation, because there is a
strict equality for two equations with the same ©. In other words, if £(n) is ©(g(n)), then g(n) is ©(f(n)).

Because the sequential search algorithm is both in O(n) and in Q(n) in the average case, we say it is ©(n) in the
average case.

Given an algebraic equation describing the time requirement for an algorithm, the upper and lower bounds always
meet. That is because in some sense we have a perfect analysis for the algorithm, embodied by the running-time
equation. For many algorithms (or their instantiations as programs), it is easy to come up with the equation that
defines their runtime behavior. The analysis for most commonly used algorithms is well understood and we can
almost always give a © analysis for them. However, the class of NP-Complete problems all have no definitive ©

analvgis inst e<ame 1incaticfvina hin-Oh and O analvses Bgen csnme “simnle” nrnarams are hard to analvze Nohodv



ATy UIU) JUITL DD MDD P MY S MM B LTIV Y WU e VU WIS WIS I M TS LA ML M W MAT A J et L Yoy

currently knows the true upper or lower bounds for the following code fragment.

while (n > 1) {
if (0DD(n)) A
n=3%n+1;
}
else{
n=n/2;

}

While some textbooks and programmers will casually say that an algorithm is “order of” or “big-Oh” of some cost
function, it is generally better to use © notation rather than big-Oh notation whenever we have sufficient knowledge
about an algorithm to be sure that the upper and lower bounds indeed match. OpenDSA modules use © notation in
preference to big-Oh notation whenever our state of knowledge makes that possible. Limitations on our ability to
analyze certain algorithms may require use of big-Oh or Q notations. In rare occasions when the discussion is
explicitly about the upper or lower bound of a problem or algorithm, the corresponding notation will be used in
preference to © notation.

2.7.1.3. Classifying Functions

Given functions f(n) and g(n) whose growth rates are expressed as algebraic equations, we might like to determine
if one grows faster than the other. The best way to do this is to take the limit of the two functions as n grows towards
infinity,

If the limit goes to oo, then f(n) is in Q(g(n)) because f(n) grows faster. If the limit goes to zero, then f(n) is in
O(g(n)) because g(n) grows faster. If the limit goes to some constant other than zero, then f(n) = ©(g(n)) because
both grow at the same rate.

Example 2.7.2
If f(n) =n? and g(n) = 2nlogn, is f(n) in O(g(n)), Q(g(n)), or O(g(n))? Since

TL2 n

2nlogn - 2logn’
we easily see that

. n?
lim = 0
n—oo 2nlogn

because n grows faster than 2logn. Thus, n? is in Q(2nlogn).

81



= O O &

A mistake that people can make is to confuse the lower bound and the best case. In general, people find low
confusing, in part because for simple algorithms, they look just like the upper bound. Let's try to figure this out.

2.7.1.4. Summary Exercise
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02.08 Calculating Program Running Time
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02.08 Calculating Program Running Time

2.8. Calculating Program Running Time

2.8.1. Calculating Program Running Time

This modules discusses the analysis for several simple code fragments. We will make use of the algorithm analysis
simplifying rules:

1. If f(n) isin O(g(n)) and g(n) is in O(h(n)), then f(n) is in O(h(n)).
2.If £(n) is in O(kg(n)) for any constant £ > 0, then f(n) is in O(g(n)).
3. If fi(n) isin O(g1(n)) and fi(n) is in O(g2(n)), then fi(n) + fa(n) is in O(max(g1(n), g2(n))).

4.1f f1(n) is in O(g1(n)) and fo(n) is in O(ga(n)), then f1(n)f2(n) is in O(g1 (n)gs (n)).

Example 2.8.1

We begin with an analysis of a simple assignment to an integer variable.

a = b;

Because the assignment statement takes constant time, it is ©(1).

Example 2.8.2

Consider a simple for loop.

sum = 0;
for (i=1; i<=n; i++) {
sum += n: 84




The first line is ©(1). The for loop is repeated n times. The third line takes constant time so, by simplifying rule
(4), the total cost for executing the two lines making up the for loop is ©(n). By rule (3), the cost of the entire
code fragment is also ©(n).

Example 2.8.3

We now analyze a code fragment with several for loops, some of which are nested.

sum = 0;

for (j=1; j<=n; j++) { // First for Lloop
for (i=1; i<=j; i++) { // 1s a double Loop

sum++;

}

}

for (k=0; k<n; k++) { // Second for Loop
A[k] = k;

}

This code fragment has three separate statements: the first assignment statement and the two for loops. Again
the assignment statement takes constant time; call it ¢;. The second for loop is just like the one in Example 2.8.2
and takes c,n = ©(n) time.

The first for loop is a double loop and requires a special technique. We work from the inside of the loop outward.
The expression sum++ requires constant time; call it c;. Because the inner for loop is executed j times, by
simplifying rule (4) it has cost c3j. The outer for loop is executed n times, but each time the cost of the inner loop
is different because it costs ¢35 with j changing each time. You should see that for the first execution of the outer
loop, j is 1. For the second execution of the outer loop, j is 2. Each time through the outer loop, ;7 becomes one
greater, until the last time through the loop when j = n. Thus, the total cost of the loop is c; times the sum of the
integers 1 through n. We know that

" n(nd1)
di= s

i=1 2

which is ©(n?). By simplifying rule (3), ©(c; + can + c3n?) is simply ©(n?).

Example 2.8.4

Compare the asymptotic analysis for the following two code fragments.
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suml = O;

for (i=1; i<=n; i++) { // First double Loop
for (j=1; j<=n; j++) { // do n times
suml++;
}
}
sum2 = 0;
for (i=1; i<=n; i++) { // Second double Loop
for (j=1; j<=i; j++) { // do i times
sum2++;
}
}

In the first double loop, the inner for loop always executes n times. Because the outer loop executes n times, it
should be obvious that the statement sum1++ is executed precisely n? times. The second loop is similar to the one
analyzed in the previous example, with cost Z’;:lj. This is approximately —;n2. Thus, both double loops cost
0O(n?), though the second requires about half the time of the first.

Example 2.8.5

Not all doubly nested for loops are ©(n?). The following pair of nested loops illustrates this fact.

suml = O;
for (k=1; k<=nj; k*=2) { // Do Log n times
for (j=1; j<=n; j++) { // Do n times
suml++;
}
}

sum2 = 0;
for (k=1; k<=nj; k*=2) { // Do Log n times
for (j=1; j<=k; j++) { // Do k times
Sum2++;
}
}

When analyzing these two code fragments, we will assume that n is a power of two. The first code fragment has
its outer for loop executed logn + 1 times because on each iteration k is multiplied by two until it reaches n.
Because the inner loop always executes n times, the total cost for the first code fragment can be expressed as

logn

Z n = nlogn.
i=0

So the cost of this first double loop is ©(nlogn). Note that a variable substitution takes place here to create the

summation, with £ = 2¢.
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In the second code fragment, the outer loop is also executed logn + 1 times. The inner loop has cost &, which
doubles each time. The summation can be expressed as

logn

Z 2" = O(n)
=0

where n is assumed to be a power of two and again k = 2.

What about other control statements? While loops are analyzed in a manner similar to for loops. The cost of an if
statement in the worst case is the greater of the costs for the then and else clauses. This is also true for the
average case, assuming that the size of n does not affect the probability of executing one of the clauses (which is
usually, but not necessarily, true). For switch statements, the worst-case cost is that of the most expensive branch.
For subroutine calls, simply add the cost of executing the subroutine.

There are rare situations in which the probability for executing the various branches of an if or switch statement
are functions of the input size. For example, for input of size n, the then clause of an if statement might be
executed with probability 1/n. An example would be an if statement that executes the then clause only for the
smallest of n values. To perform an average-case analysis for such programs, we cannot simply count the cost of
the if statement as being the cost of the more expensive branch. In such situations, the technique of amortized
analysis can come to the rescue.

Determining the execution time of a recursive subroutine can be difficult. The running time for a recursive subroutine
is typically best expressed by a recurrence relation. For example, the recursive factorial function calls itself with a
value one less than its input value. The result of this recursive call is then multiplied by the input value, which takes
constant time. Thus, the cost of the factorial function, if we wish to measure cost in terms of the number of
multiplication operations, is one more than the number of multiplications made by the recursive call on the smaller
input. Because the base case does no multiplications, its cost is zero. Thus, the running time for this function can be
expressed as

T(n)=T(n—1)+1forn>1; T(1) =0.

The closed-form solution for this recurrence relation is ©(n).

2.8.1.1. Case Study: Two Search Algorithms

The final example of algorithm analysis for this section will compare two algorithms for performing search in an
array. Earlier, we determined that the running time for sequential search on an array where the search value K is
equally likely to appear in any location is ©(n) in both the average and worst cases. We would like to compare this
running time to that required to perform a binary search on an array whose values are stored in order from lowest
to highest. Here is a visualization of the binary search method.

= O & &

The input is a sorted array, and in this example we will search for the record with key value 45. We will pu
above 45 as a reminder that this is what we will be searching for.
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// Return the position of an element in sorted array A with value K.
// If K is not in A, return A.length.
public static int binarySearch(int[] A, int K) {

int low = 0;

int high = A.length - 1;

while(low <= high) { // Stop when low and high meet
int mid = (low + high) / 2; // Check middle of subarray
if( A[mid] < K) low = mid + 1; // In right half
else if(A[mid] > K) high = mid - 1; // In left half
else return mid; // Found it

}

return A.length; // Search value not in A

}
v

[11 13121126(29(36|40|41|145(51(54|56|65|72|77 83]
o 1.2 3 4 5 6 7 8 9 10 1M1 12 13 14 15

2.8.1.2. Binary Search Practice Exercise

(Undo Reset | Model Answer Gradej

Instructions:

The blue box contains a search key. The array stores values in ascending order, but these are intially hidden -
Find the key in the array by clicking on the midpoint positions as they would be calculated by the binary searc
Whenever you click in the array, the value stored there will be displayed. Remember that midpoint calculation
arithmetic, so the position calculation rounds down.

Find

( )

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

2.8.1.3. Analyzing Binary Search
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To find the cost of binary search in the worst case, we can model the running time as a recurrence and the
closed-form solution. Each recursive call to binarySearch cuts the size of the array approximately in half,

model the worst-case cost as follows, assuming for simplicity that »n is a power of two.
O(n) =0(n/2)+1,6(1) =1

Function binarySearch is designed to find the (single) occurrence of K and return its position. A special value is
returned if K does not appear in the array. This algorithm can be modified to implement variations such as returning
the position of the first occurrence of K in the array if multiple occurrences are allowed, and returning the position of
the greatest value less than K when K is not in the array.

Comparing sequential search to binary search, we see that as n grows, the ©(n) running time for sequential search
in the average and worst cases quickly becomes much greater than the ©(logn) running time for binary search.
Taken in isolation, binary search appears to be much more efficient than sequential search. This is despite the fact
that the constant factor for binary search is greater than that for sequential search, because the calculation for the
next search position in binary search is more expensive than just incrementing the current position, as sequential
search does.

Note however that the running time for sequential search will be roughly the same regardless of whether or not the
array values are stored in order. In contrast, binary search requires that the array values be ordered from lowest to
highest. Depending on the context in which binary search is to be used, this requirement for a sorted array could be
detrimental to the running time of a complete program, because maintaining the values in sorted order requires a
greater cost when inserting new elements into the array. This is an example of a tradeoff between the advantage of
binary search during search and the disadvantage related to maintaining a sorted array. Only in the context of the
complete problem to be solved can we know whether the advantage outweighs the disadvantage.

2.8.2. Summary Exercise
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02.09 Analyzing Problems
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02.09 Analyzing Problems

2.9. Analyzing Problems

2.9.1. Analyzing Problems

You most often use the techniques of “algorithm” analysis to analyze an algorithm, or the instantiation of an
algorithm as a program. You can also use these same techniques to analyze the cost of a problem. The key
question that we want to ask is: How hard is a problem? Certainly we should expect that in some sense, the
problem of sorting a list of records is harder than the problem of searching a list of records for a given key value.
Certainly the algorithms that we know for sorting some records seem to be more expensive than the algorithms that
we know for searching those same records.

What we need are useful definitions for the upper bound and lower bound of a problem.

One might start by thinking that the upper bound for a problem is how hard any algorithm can be for the problem.
But we can make algorithms as bad as we want, so that is not useful. Instead, what is useful is to say that a problem
is only as hard as what we CAN do. In other words, we should define the upper bound for a problem to be the best
algorithm that we know for the problem. Of course, whenever we talk about bounds, we have to say when they
apply. We we really should say something like the best algorithm that we know in the worst case, or the best
algorithm that we know in the average case.

But what does it mean to give a lower bound for a problem? Lower bound refers to the minimum that any algorithm
MUST cost. For example, when searching an unsorted list, we MUST look at every record. When sorting a list, we
MUST look at every record (to even know if it is sorted).

It is much easier to show that an algorithm (or program) is in Q(f(rn)) than it is to show that a problem is in Q(f(n)).
For a problem to be in Q(f(n)) means that every algorithm that solves the problem is in Q(f(n)), even algorithms
that we have not thought of! In other words, EVERY algorithm MUST have at least this cost. So, to prove a lower
bound, we need an argument that is true, even for algorithms that we don’t know.

So far all of our examples of algorithm analysis give “obvious” results, with big-Oh always matching Q. To
understand how big-Oh, Q, and © notations are properly used to describe our understanding of a problem or an
algorithm, it is best to consider an example where you do not already know a lot about the problem.

Let us look ahead to analyzing the problem of sorting to see how this process works. What is the least possible cost
for any sorting algorithm in the worst case? The algorithm must at least look at every element in the input, just to
determine that the input is truly sorted. Thus, any sortingg?lgorithm must take at least cn time. For many problems,



this observation that each of the n inputs must be looked at leads to an easy Q(n) lower bound.

In your previous study of computer science, you have probably seen an example of a sorting algorithm whose
running time is in O(n?) in the worst case. The simple Bubble Sort and Insertion Sort algorithms typically given as
examples in a first year programming course have worst case running times in O(n?). Thus, the problem of sorting
can be said to have an upper bound in O(n?). How do we close the gap between Q(n) and O(n?)? Can there be a
better sorting algorithm? If you can think of no algorithm whose worst-case growth rate is better than O(n?), and if
you have discovered no analysis technique to show that the least cost for the problem of sorting in the worst case is
greater than Q(n), then you cannot know for sure whether or not there is a better algorithm.

Many good sorting algorithms have running time that is in O(nlogn) in the worst case. This greatly narrows the gap.
With this new knowledge, we now have a lower bound in Q(n) and an upper bound in O(nlogn). Should we search
for a faster algorithm? Many have tried, without success. Fortunately (or perhaps unfortunately?), we can prove
that any sorting algorithm must have running time in Q(nlogn) in the worst case. 1 This proof is one of the most
important results in the field of algorithm analysis, and it means that no sorting algorithm can possibly run faster
than cnlogn for the worst-case input of size n. Thus, we can conclude that the problem of sorting is ©(nlogn) in the
worst case, because the upper and lower bounds have met.

Knowing the lower bound for a problem does not give you a good algorithm. But it does help you to know when to
stop looking. If the lower bound for the problem matches the upper bound for the algorithm (within a constant
factor), then we know that we can find an algorithm that is better only by a constant factor.

So, to summarize: The upper bound for a problem is the best that you CAN do, while the lower bound for a problem
is the least work that you MUST do. If those two are the same, then we say that we really understand our problem.

1
While it is fortunate to know the truth, it is unfortunate that sorting is ©(nlogn) rather than ©(n).
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2.10. Recurrence Relations

2.10.1. Recurrence Relations

The running time for a recursive algorithm is most easily expressed by a recursive expression because the total time
for the recursive algorithm includes the time to run the recursive call(s). A recurrence relation defines a function by
means of an expression that includes one or more (smaller) instances of itself. A classic example is the recursive
definition for the factorial function:

nl=Mm-1)-nforn>1; 11=0=1.
Another standard example of a recurrence is the Fibonacci sequence:
Fib(n) = Fib(n — 1) + Fib(n — 2) for n > 2; Fib(1) = Fib(2) =
From this definition, the first seven numbers of the Fibonacci sequence are
1,1,2,3,5,8, and 13.

Notice that this definition contains two parts: the general definition for Fib(n) and the base cases for Fib(1) and
Fib(2). Likewise, the definition for factorial contains a recursive part and base cases.

Recurrence relations are often used to model the cost of recursive functions. For example, the number of
multiplications required by a recursive version of the factorial function for an input of size n will be zero when n =0
or n =1 (the base cases), and it will be one plus the cost of calling fact on a value of n — 1. This can be defined
using the following recurrence:

T(n) =T(n—1)+1forn>1; T(0)=T(1)=0.

As with summations, we typically wish to replace the recurrence relation with a closed-form solution. One approach
is to expand the recurrence by replacing any occurrences of T on the right-hand side with its definition.

O O O &

We will use expansion to guess closed form solution the
T(n) = T(n—1)+1forn > 1;T(0) = T(1) =0.

A slightly more complicated recurrence is
T(n)=T(n—-1)+n; T(1)=1.

Aaain. we will use expansion to help us find a closed fornggolution.
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We will use expansion to guess the closed form solution for the recurrence T(n) = T(n — 1) +n forn > 1; T(1)

95



02.11 Common Misunderstandings
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02.11 Common Misunderstandings

2.11. Common Misunderstandings

2.11.1. Common Misunderstandings

Asymptotic analysis is one of the most intellectually difficult topics that undergraduate computer science majors
are confronted with. Most people find growth rates and asymptotic analysis confusing and so develop
misconceptions about either the concepts or the terminology. It helps to know what the standard points of confusion
are, in hopes of avoiding them.

One problem with differentiating the concepts of upper and lower bounds is that, for most algorithms that you will
encounter, it is easy to recognize the true growth rate for that algorithm. Given complete knowledge about a cost
function, the upper and lower bound for that cost function are always the same. Thus, the distinction between an
upper and a lower bound is only worthwhile when you have incomplete knowledge about the thing being measured.
If this distinction is still not clear, then you should read about analyzing problems. We use ©-notation to indicate
that there is no meaningful difference between what we know about the growth rates of the upper and lower bound
(which is usually the case for simple algorithms).

It is a common mistake to confuse the concepts of upper bound or lower bound on the one hand, and worst case or
best case on the other. The best, worst, or average cases each define a cost for a specific input instance (or
specific set of instances for the average case). In contrast, upper and lower bounds describe our understanding of
the growth rate for that cost measure. So to define the growth rate for an algorithm or problem, we need to
determine what we are measuring (the best, worst, or average case) and also our description for what we know
about the growth rate of that cost measure (big-Oh, Q, or ©).

The upper bound for an algorithm is not the same as the worst case for that algorithm for a given input of size n.
What is being bounded is not the actual cost (which you can determine for a given value of n), but rather the
growth rate for the cost. There cannot be a growth rate for a single point, such as a particular value of n. The
growth rate applies to the change in cost as a change in input size occurs. Likewise, the lower bound is not the
same as the best case for a given size n.

Another common misconception is thinking that the best case for an algorithm occurs when the input size is as
small as possible, or that the worst case occurs when the input size is as large as possible. What is correct is that
best- and worse-case instances exist for each possible size of input. That is, for all inputs of a given size, say ¢, one
(or more) of the inputs of size i is the best and one (or more) of the inputs of size i is the worst. Often (but not
always!), we can characterize the best input case for an arbitrary size, and we can characterize the worst input case
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as the input size grows.

Example 2.11.1

What is the growth rate of the best case for sequential search? For any array of size n, the best case occurs
when the value we are looking for appears in the first position of the array. This is true regardless of the size of
the array. Thus, the best case (for arbitrary size n) occurs when the desired value is in the first of » positions, and
its cost is 1. It is not correct to say that the best case occurs when n = 1.

= © & &

Imagine drawing a graph to show the cost of finding the maximum value among n values, as n grows. That is,
would be n, and the y value would be the cost for a given value of n.

Cost

(0,0)

Practicing Common Misunderstandings exercise Current score: O out of
5
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Answer TRUE or FALSE. Answer

The worst case for the sequencial search algorithm occurs when the array size Check Answer

tends to infinity.

Need help?

I'd like a hint

O True

O False

98



2.12. Multiple Parameters

Sometimes the proper analysis for an algorithm requires multiple parameters to describe the cost. To illustrate the
concept, consider an algorithm to compute the rank ordering for counts of all pixel values in a picture. Pictures are
often represented by a two-dimensional array, and a pixel is one cell in the array. The value of a pixel is either the
code value for the color, or a value for the intensity of the picture at that pixel. Assume that each pixel can take any
integer value in the range 0 to C — 1. The problem is to find the number of pixels of each color value and then sort
the color values with respect to the number of times each value appears in the picture. Assume that the picture is a
rectangle with P pixels. A pseudocode algorithm to solve the problem follows.

for (i=0; i<C; i++) { // Initialize count
count[i] = 0;

}

for (i=0; i<P; i++) { // Look at all of the pixels
count[value(i)]++; // Increment a pixel value count

}

sort(count); // Sort pixel value counts

In this example, count is an array of size C that stores the number of pixels for each color value. Function value(i)
returns the color value for pixel i.

The time for the first for loop (which initializes count) is based on the number of colors, C. The time for the second
loop (which determines the number of pixels with each color) is ©(P). The time for the final line, the call to sort,
depends on the cost of the sorting algorithm used. We will assume that the sorting algorithm has cost ©(Plog P) if P
items are sorted, thus yielding ©(Plog P) as the total algorithm cost.

Is this a good representation for the cost of this algorithm? What is actually being sorted? It is not the pixels, but
rather the colors. What if C is much smaller than P? Then the estimate of ©(Plog P) is pessimistic, because much
fewer than P items are being sorted. Instead, we should use P as our analysis variable for steps that look at each
pixel, and C as our analysis variable for steps that look at colors. Then we get ©(C) for the initialization loop, ©(P)
for the pixel count loop, and ©(C'log C) for the sorting operation. This yields a total cost of ©(P + ClogC).

Why can we not simply use the value of C for input size and say that the cost of the algorithm is ©(ClogC)?
Because, C is typically much less than P. For example, a picture might have 1000 x 1000 pixels and a range of
256 possible colors. So, P is one million, which is much larger than C'logC. But, if P is smaller, or C larger (even if it
is still less than P), then C'log C' can become the larger quantity. Thus, neither variable should be ignored.
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2.13. Space Bounds

Besides time, space is the other computing resource that is commonly of concern to programmers. Just as
computers have become much faster over the years, they have also received greater allotments of memory. Even
so, the amount of available disk space or main memory can be significant constraints for algorithm designers.

The analysis techniques used to measure space requirements are similar to those used to measure time
requirements. However, while time requirements are normally measured for an algorithm that manipulates a
particular data structure, space requirements are normally determined for the data structure itself. The concepts of
asymptotic analysis for growth rates on input size apply completely to measuring space requirements.

Example 2.13.1

What are the space requirements for an array of n integers? If each integer requires c bytes, then the array
requires cn bytes, which is ©(n).

Example 2.13.2

Imagine that we want to keep track of friendships between n people. We can do this with an array of size n x n.
Each row of the array represents the friends of an individual, with the columns indicating who has that individual
as a friend. For example, if person j is a friend of person ¢, then we place a mark in column j of row : in the array.
Likewise, we should also place a mark in column 4 of row j if we assume that friendship works both ways. For n
people, the total size of the array is ©(n?).

A data structure’s primary purpose is to store data in a way that allows efficient access to those data. To provide
efficient access, it may be necessary to store additional information about where the data are within the data
structure. For example, each node of a linked list must store a pointer to the next value on the list. All such
information stored in addition to the actual data values is referred to as overhead. Ideally, overhead should be kept
to a minimum while allowing maximum access. The need to maintain a balance between these opposing goals is
what makes the study of data structures so interesting.

One important aspect of algorithm design is referred to as the space/time tradeoff principle. The space/time
tradeoff principle says that one can often achieve a reduction in time if one is willing to sacrifice space or vice versa.
Many programs can be modified to reduce storage requirements by “packing” or encoding information. “Unpacking”
or decoding the information requires additional time. Thus, the resulting program uses less space but runs slower.
Conversely, many programs can be modified to pre-store results or reorganize information to allow faster running
time at the expense of greater storage requirements. Typically, such changes in time and space are both by a
constant factor.

A classic example of a space/time tradeoff is the lookup table. A lookup table pre-stores the value of a function that
would otherwise be computed each time it is needed. For example, 12! is the greatest value for the factorial function
that can be stored in a 32-bit int variable. If you are writing a program that often computes factorials, it is likely to
be much more time efficient to simply pre-compute and store the 12 values in a table. Whenever the program needs
the value of n! it can simply check the lookup table. (|f160> 12, the value is too large to store as an int variable



anyway.) Compared to the time required to compute factorials, it may be well worth the small amount of additional
space needed to store the lookup table.

Lookup tables can also store approximations for an expensive function such as sine or cosine. If you compute this
function only for exact degrees or are willing to approximate the answer with the value for the nearest degree, then
a lookup table storing the computation for exact degrees can be used instead of repeatedly computing the sine
function. Note that initially building the lookup table requires a certain amount of time. Your application must use the
lookup table often enough to make this initialization worthwhile.

Another example of the space/time tradeoff is typical of what a programmer might encounter when trying to optimize
space. Here is a simple code fragment for sorting an array of integers. We assume that this is a special case where
there are n integers whose values are a permutation of the integers from 0 to n — 1. This is an example of a binsort.
Binsort assigns each value to an array position corresponding to its value.

Java (Generic)

for (i=0; i<A.length; i++)
B[A[i]] = A[i];

This is efficient and requires ©(n) time. However, it also requires two arrays of size n. Next is a code fragment that
places the permutation in order but does so within the same array (thus it is an example of an “in place” sort).

Java (Generic)

for (i=0; i<A.length; i++)
while (A[i] !'= i) // Swap element A[1] with A[A[1]]
Swap.swap(A, i, A[i]);

Function swap(A, i, j) exchanges elements i and j in array A. It may not be obvious that the second code
fragment actually sorts the array. To see that this does work, notice that each pass through the for loop will at least
move the integer with value i to its correct position in the array, and that during this iteration, the value of A[i] must
be greater than or equal to :. A total of at most n swap operations take place, because an integer cannot be moved
out of its correct position once it has been placed there, and each swap operation places at least one integer in its
correct position. Thus, this code fragment has cost ©(n). However, it requires more time to run than the first code
fragment. On my computer the second version takes nearly twice as long to run as the first, but it only requires half
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2.14. Code Tuning and Empirical Analysis

2.14.1. Code Tuning and Empirical Analysis

In practice, there is not such a big difference in running time between an algorithm with growth rate ©(n) and
another with growth rate ©(nlogn). There is, however, an enormous difference in running time between algorithms
with growth rates of ©(nlogn) and ©(n?). As you shall see during the course of your study of common data
structures and algorithms, there are many problems whose obvious solution requires ©(n?) time, but that also have
a solution requiring ©(nlogn) time. Examples include sorting and searching, two of the most important computer
problems.

While not nearly so important as changing an algorithm to reduce its growth rate, “code tuning” can also lead to
dramatic improvements in running time. Code tuning is the art of hand-optimizing a program to run faster or require
less storage. For many programs, code tuning can reduce running time or cut the storage requirements by a factor
of two or more. Even speedups by a factor of five to ten are not uncommon. Occasionally, you can get an even
bigger speedup by converting from a symbolic representation of the data to a numeric coding scheme on which you
can do direct computation.

Here are some suggestions for ways to speed up your programs by code tuning. The most important thing to realize
is that most statements in a program do not have much effect on the running time of that program. There are
normally just a few key subroutines, possibly even key lines of code within the key subroutines, that account for
most of the running time. There is little point to cutting in half the running time of a subroutine that accounts for only
1% of the total running time. Focus your attention on those parts of the program that have the most impact.

When tuning code, it is important to gather good timing statistics. Many compilers and operating systems include
profilers and other special tools to help gather information on both time and space use. These are invaluable when
trying to make a program more efficient, because they can tell you where to invest your effort.

A lot of code tuning is based on the principle of avoiding work rather than speeding up work. A common situation
occurs when we can test for a condition that lets us skip some work. However, such a test is never completely free.
Care must be taken that the cost of the test does not exceed the amount of work saved. While one test might be
cheaper than the work potentially saved, the test must always be made and the work can be avoided only some
fraction of the time.

Example 2.14.1

A common operation in computer graphics applications is to find which among a set of complex objects contains
a given point in space. Many useful data structures and algorithms have been developed to deal with variations of
this problem. Most such implementations involve the following tuning step. Directly testing whether a given
complex object contains the point in question is relatively expensive. Instead, we can screen for whether the point
is contained within a bounding box for the object. The bounding box is simply the smallest rectangle (usually
defined to have sides perpendicular to the  and y axes) that contains the object. If the point is not in the
bounding box, then it cannot be in the object. If the point is in the bounding box, only then would we conduct the
full comparison of the object versus the point. Note that if the point is outside the bounding box, we saved time
because the bounding box test is cheaper than the cor?ggrison of the full object versus the point. But if the point



is inside the bounding box, then that test is redundant because we still have to compare the point against the
object. Typically the amount of work avoided by making this test is greater than the cost of making the test on
every object.

Be careful not to use tricks that make the program unreadable. Most code tuning is simply cleaning up a carelessly
written program, not taking a clear program and adding tricks. In particular, you should develop an appreciation for
the capabilities of modern compilers to make extremely good optimizations of expressions. “Optimization of
expressions” here means a rearrangement of arithmetic or logical expressions to run more efficiently. Be careful not
to damage the compiler’s ability to do such optimizations for you in an effort to optimize the expression yourself.
Always check that your “optimizations” really do improve the program by running the program before and after the
change on a suitable benchmark set of input. Many times | have been wrong about the positive effects of code
tuning in my own programs. Most often | am wrong when | try to optimize an expression. It is hard to do better than
the compiler.

The greatest time and space improvements come from a better data structure or algorithm. The most important rule
of code tuning is:

First tune the algorithm, then tune the code.

2.14.1.1. Empirical Analysis

Asymptotic algorithm analysis is an analytic tool, whereby we model the key aspects of an algorithm to determine
the growth rate of the algorithm as the input size grows. It has proved hugely practical, guiding developers to use
more efficient algorithms. But it is really an estimation technique, and it has its limitations. These include the effects
at small problem size, determining the finer distinctions between algorithms with the same growth rate, and the
inherent difficulty of doing mathematical modeling for more complex problems.

An alternative to analytical approaches are empirical ones. The most obvious empirical approach is simply to run
two competitors and see which performs better. In this way we might overcome the deficiencies of analytical
approaches.

Be warned that comparative timing of programs is a difficult business, often subject to experimental errors arising
from uncontrolled factors (system load, the language or compiler used, etc.). The most important concern is that you
might be biased in favor of one of the programs. If you are biased, this is certain to be reflected in the timings. One
look at competing software or hardware vendors’ advertisements should convince you of this. The most common
pitfall when writing two programs to compare their performance is that one receives more code-tuning effort than the
other, since code tuning can often reduce running time by a factor of five to ten. If the running times for two
programs differ by a constant factor regardless of input size (i.e., their growth rates are the same), then differences
in code tuning might account for any difference in running time. Be suspicious of empirical comparisons in this
situation.

Another approach to analytical analysis is simulation. The idea of simulation is to model the problem with a
computer program and then run it to get a result. In the context of algorithm analysis, simulation is distinct from
empirical comparison of two competitors because the purpose of the simulation is to perform analysis that might
otherwise be too difficult. A good example of this appears in the following figure.
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02.15 Algorithm Analysis Summary Exercises

Due No Due Date Points 1 Submitting an external tool

02.15 Algorithm Analysis Summary Exercises

2.15. Algorithm Analysis Summary Exercises

2.15.1. Summary Exercise: CS2

Practicing Algorithm Analysis Summary Questions Current score: O out of
5
Determine O for the following code fragment in the average case. Assume that all Answer

variables are of type "int".

for(i=0;i<n-1;i+t)
for(j=i+1j<n;j+){
tmp = AAI[j; Need help?
AA[I] = AALTT;
AA[jIII] = tmp;
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02.16 Algorithm Analysis Summary Exercises

Due No Due Date Points 1 Submitting an external tool

02.16 Algorithm Analysis Summary Exercises

2.16. Algorithm Analysis Summary Exercises

2.16.1. Summary Exercise: CS3

Practicing Algorithm Analysis Summary Questions Current score: O out of
5
Suppose that a particular algorithm has time complexity T(n) = 8n and that Answer

executing an implementation of it on a particular machine takes { seconds for 1.
inputs. Now suppose that we are presented with a machine that is 64 times as

fast. How many inputs could we process on the new machine in ¢ seconds?

On? Need help?

O 8n?
O8n
O 64n?
o2
O8
064

O 64n
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Chapter 3: Generics

This chapter is Copyright © 1995, 2021 Oracle and/or its affiliates. All rights reserved.

Content is copied from https://docs.oracle.com/javase/tutorial/java/generics

Content is replicated here under fair use copyright doctrine.
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Trail: Learning the Java Language
Lesson: Generics (Updated)

The Java Tutorials have been written for JDK 8. Examples and practices described in this page don't take advantage of improvements introduced in
later releases and might use technology no longer available.

See Java Language Changes for a summary of updated language features in Java SE 9 and subsequent releases.

See JDK Release Notes for information about new features, enhancements, and removed or deprecated options for all JDK releases.

Why Use Generics?

In a nutshell, generics enable types (classes and interfaces) to be parameters when defining classes, interfaces and methods. Much like the more
familiar formal parameters used in method declarations, type parameters provide a way for you to re-use the same code with different inputs. The
difference is that the inputs to formal parameters are values, while the inputs to type parameters are types.

Code that uses generics has many benefits over non-generic code:

¢ Stronger type checks at compile time.
A Java compiler applies strong type checking to generic code and issues errors if the code violates type safety. Fixing compile-time errors is
easier than fixing runtime errors, which can be difficult to find.

¢ Elimination of casts.
The following code snippet without generics requires casting:

List list = new ArrayList();
list.add("hello");
String s = (String) list.get(9);

When re-written to use generics, the code does not require casting:

List<String> list = new ArrayList<String>();
list.add("hello");
String s = list.get(©0); // no cast

¢ Enabling programmers to implement generic algorithms.
By using generics, programmers can implement generic algorithms that work on collections of different types, can be customized, and are type
safe and easier to read.

About Oracle | Contact Us | Legal Notices | Terms of Use | Your Privacy Rights | Cookie Preferences | Ad Choices
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Generic Types
A generic type is a generic class or interface that is parameterized over types. The following Box class will be modified to demonstrate the concept.

A Simple Box Class

Begin by examining a non-generic Box class that operates on objects of any type. It needs only to provide two methods: set, which adds an object to
the box, and get, which retrieves it:

public class Box {
private Object object;

public void set(Object object) { this.object = object; }
public Object get() { return object; }
}

Since its methods accept or return an object, you are free to pass in whatever you want, provided that it is not one of the primitive types. There is no
way to verify, at compile time, how the class is used. One part of the code may place an 1nteger in the box and expect to get Integers out of it, while
another part of the code may mistakenly pass in a string, resulting in a runtime error.

A Generic Version of the Box Class

A generic class is defined with the following format:
class name<T1, T2, ..., Tn> { /* ... */ }

The type parameter section, delimited by angle brackets (<>), follows the class name. It specifies the type parameters (also called type variables) 11, 12,
..., and Tn.

To update the Box class to use generics, you create a generic type declaration by changing the code "public class Box" t0 "public class Box<T>". This
introduces the type variable, 1, that can be used anywhere inside the class.

With this change, the Box class becomes:

/**
* Generic version of the Box class.
* @param <T> the type of the value being boxed
*/
public class Box<T> {
// T stands for "Type"
private T t;

public void set(T t) { this.t = t; }
public T get() { return t; }
}

As you can see, all occurrences of object are replaced by 1. A type variable can be any non-primitive type you specify: any class type, any interface
type, any array type, or even another type variable.
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This same technique can be applied to create generic interfaces.
Type Parameter Naming Conventions

By convention, type parameter names are single, uppercase letters. This stands in sharp contrast to the variable naming conventions that you already
know about, and with good reason: Without this convention, it would be difficult to tell the difference between a type variable and an ordinary class or
interface name.

The most commonly used type parameter names are:

+ E - Element (used extensively by the Java Collections Framework)
o K-Key

¢ N - Number

e T-Type

e V-Value

e S,U\V etc. - 2nd, 3rd, 4th types

You'll see these names used throughout the Java SE API and the rest of this lesson.
Invoking and Instantiating a Generic Type

To reference the generic Box class from within your code, you must perform a generic type invocation, which replaces T with some concrete value, such
as Integer:

Box<Integer> integerBox;

You can think of a generic type invocation as being similar to an ordinary method invocation, but instead of passing an argument to a method, you are
passing a type argument — Integer in this case — to the Box class itself.

Type Parameter and Type Argument Terminology: Many developers use the terms "type parameter" and "type argument”
interchangeably, but these terms are not the same. When coding, one provides type arguments in order to create a parameterized type.
Therefore, the T in Foo<T> is a type parameter and the string in Foo<String> f is a type argument. This lesson observes this definition when
using these terms.

Like any other variable declaration, this code does not actually create a new Box object. It simply declares that integerBox will hold a reference to a "Box
of Integer", which is how Box<Integers is read.

An invocation of a generic type is generally known as a parameterized type.
To instantiate this class, use the new keyword, as usual, but place <integer> between the class name and the parenthesis:

Box<Integer> integerBox = new Box<Integer>();
The Diamond

In Java SE 7 and later, you can replace the type arguments required to invoke the constructor of a generic class with an empty set of type arguments
(<>) as long as the compiler can determine, or infer, the type arguments from the context. This pair of angle brackets, <>, is informally called the
diamond. For example, you can create an instance of Box<Integer> with the following statement:

Box<Integer> integerBox = new Box<>();

For more information on diamond notation and type inference, see Type Inference.
Multiple Type Parameters

As mentioned previously, a generic class can have multiple type parameters. For example, the generic orderedpair class, which implements the generic
pair interface:

public interface Pair<K, V> {
public K getKey();
public V getValue();

public class OrderedPair<K, V> implements Pair<K, V> {

private K key;
private V value;
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public OrderedPair(K key, V value) {
this.key = key;
this.value = value;

public K getKey() { return key; }
public V getValue() { return value; }

The following statements create two instantiations of the orderedpair class:

Pair<String, Integer> pl = new OrderedPair<String, Integer>("Even", 8);
Pair<String, String> p2 = new OrderedPair<String, String>("hello", "world");

The code, new OrderedPair<String, Integer>, instantiates k as a string and v as an Integer. Therefore, the parameter types of orderedprair's constructor
are string and Integer, respectively. Due to autoboxing, it is valid to pass a string and an int to the class.

As mentioned in The Diamond, because a Java compiler can infer the k and v types from the declaration orderedPair<string, Integer>, these
statements can be shortened using diamond notation:

OrderedPair<String, Integer> pl = new OrderedPair<>("Even", 8);
OrderedPair<String, String> p2 = new OrderedPair<>("hello", "world");

To create a generic interface, follow the same conventions as for creating a generic class.
Parameterized Types

You can also substitute a type parameter (that is, k or v) with a parameterized type (that is, List<String>). For example, using the orderedpair<k, v>
example:

OrderedPair<String, Box<Integer>> p = new OrderedPair<>("primes", new Box<Integer>(...));
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Raw Types

A raw type is the name of a generic class or interface without any type arguments. For example, given the generic Box class:

public class Box<T> {
public void set(T t) { /* ... */ }
/] ...

}

To create a parameterized type of Box<T>, you supply an actual type argument for the formal type parameter T:
Box<Integer> intBox = new Box<>();

If the actual type argument is omitted, you create a raw type of Box<T>:
Box rawBox = new Box();

Therefore, Box is the raw type of the generic type Box<T>. However, a non-generic class or interface type is not a raw type.

Raw types show up in legacy code because lots of API classes (such as the collections classes) were not generic prior to JDK 5.0. When using raw
types, you essentially get pre-generics behavior — a Box gives you objects. For backward compatibility, assigning a parameterized type to its raw type
is allowed:

Box<String> stringBox = new Box<>();
Box rawBox = stringBox; // OK

But if you assign a raw type to a parameterized type, you get a warning:

Box rawBox = new Box(); // rawBox is a raw type of Box<T>
Box<Integer> intBox = rawBox; // warning: unchecked conversion

You also get a warning if you use a raw type to invoke generic methods defined in the corresponding generic type:

Box<String> stringBox = new Box<>();
Box rawBox = stringBox;
rawBox.set(8); // warning: unchecked invocation to set(T)

The warning shows that raw types bypass generic type checks, deferring the catch of unsafe code to runtime. Therefore, you should avoid using raw
types.

The Type Erasure section has more information on how the Java compiler uses raw types.
Unchecked Error Messages

As mentioned previously, when mixing legacy code with generic code, you may encounter warning messages similar to the following:

Note: Example.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

This can happen when using an older API that operates on raw types, as1sl112wn in the following example:



public class WarningDemo {
public static void main(String[] args){
Box<Integer> bi;
bi = createBox();

static Box createBox(){
return new Box();

The term "unchecked" means that the compiler does not have enough type information to perform all type checks necessary to ensure type safety. The
"unchecked" warning is disabled, by default, though the compiler gives a hint. To see all "unchecked" warnings, recompile with -x1int:unchecked.

Recompiling the previous example with -x1lint:unchecked reveals the following additional information:

WarningDemo.java:4: warning: [unchecked] unchecked conversion
found : Box
required: Box<java.lang.Integer>

bi = createBox();

A

1 warning

To completely disable unchecked warnings, use the -Xlint:-unchecked flag. The @suppresswarnings("unchecked") annotation suppresses unchecked
warnings. If you are unfamiliar with the @ SuppresswWarnings syntax, see Annotations.
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Generic Methods

Generic methods are methods that introduce their own type parameters. This is similar to declaring a generic type, but the type parameter's scope is
limited to the method where it is declared. Static and non-static generic methods are allowed, as well as generic class constructors.

The syntax for a generic method includes a list of type parameters, inside angle brackets, which appears before the method's return type. For static
generic methods, the type parameter section must appear before the method's return type.

The util class includes a generic method, compare, which compares two pair objects:

public class Util {
public static <K, V> boolean compare(Pair<K, V> pl1, Pair<K, V> p2) {
return pl.getKey().equals(p2.getKey()) &&
pl.getValue().equals(p2.getValue());

public class Pair<K, V> {

private K key;
private V value;

public Pair(K key, V value) {
this.key = key;
this.value = value;

public void setKey(K key) { this.key = key; }

public void setValue(V value) { this.value = value; }
public K getKey() { return key; }

public V getvalue() { return value; }

}
The complete syntax for invoking this method would be:

Pair<Integer, String> pl = new Pair<>(1, "apple");
Pair<Integer, String> p2 = new Pair<>(2, "pear");
boolean same = Util.<Integer, String>compare(pl, p2);

The type has been explicitly provided, as shown in bold. Generally, this can be left out and the compiler will infer the type that is needed:

Pair<Integer, String> pl = new Pair<>(1, "apple");
Pair<Integer, String> p2 = new Pair<>(2, "pear");
boolean same = Util.compare(pl, p2);

This feature, known as type inference, allows you to invoke a generic method as an ordinary method, without specifying a type between angle
brackets. This topic is further discussed in the following section, Type Inference.
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Chapter 4: Linear Structures

OpenDSA License

OpenDSA is Copyright © 2013-2016 by Ville Karavirta and Cliff Shaffer.
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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4.1. Chapter Introduction: Lists

If your program needs to store a few things—numbers, payroll records, or job descriptions for example—the
simplest and most effective approach might be to put them in a list. Only when you have to organize and search
through a large number of things do more sophisticated data structures like search trees become necessary. Many
applications don’t require any form of search, and they do not require that an ordering be placed on the objects
being stored. Some applications require that actions be performed in a strict chronological order, processing objects
in the order that they arrived, or perhaps processing objects in the reverse of the order that they arrived. For all
these situations, a simple list structure is appropriate.

This chapter describes representations both for lists and for two important list-like structures called the stack and
the queue. Along with presenting these fundamental data structures, the other goals of the chapter are to:

1. Give examples that show the separation of a logical representation in the form of an ADT from a physical
implementation as a data structure.

2. lllustrate the use of asymptotic analysis in the context of simple operations that you might already be familiar
with. In this way you can begin to see how asymptotic analysis works, without the complications that arise when
analyzing more sophisticated algorithms and data structures.

We begin by defining an ADT for lists. Two implementations for the list ADT—the array-based list and the linked
list—are covered in detail and their relative merits discussed. The chapter finishes with implementations for stacks
and queues.
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04.02 The List ADT

Due No Due Date Points 2 Submitting an external tool

04.02 The List ADT

4.2. The List ADT

4.2.1. The List ADT

We all have an intuitive understanding of what we mean by a “list”. We want to turn this intuitive understanding into
a concrete data structure with implementations for its operations. The most important concept related to lists is that
of position. In other words, we perceive that there is a first element in the list, a second element, and so on. So,
define a list to be a finite, ordered sequence of data items known as elements. This is close to the mathematical
concept of a sequence.

“Ordered” in this definition means that each element has a position in the list. So the term “ordered” in this context
does not mean that the list elements are sorted by value. (Of course, we can always choose to sort the elements on
the list if we want; it’s just that keeping the elements sorted is not an inherent property of being a list.)

Each list element must have some data type. In the simple list implementations discussed in this chapter, all
elements of the list are usually assumed to have the same data type, although there is no conceptual objection to
lists whose elements have differing data types if the application requires it. The operations defined as part of the list
ADT do not depend on the elemental data type. For example, the list ADT can be used for lists of integers, lists of
characters, lists of payroll records, even lists of lists.

A list is said to be empty when it contains no elements. The number of elements currently stored is called the
length of the list. The beginning of the list is called the head, the end of the list is called the tail.

We need some notation to show the contents of a list, so we will use the same angle bracket notation that is
normally used to represent sequences. To be consistent with standard array indexing, the first position on the list is
denoted as 0. Thus, if there are n elements in the list, they are given positions 0 through n—1 as
(ag, a1, -.., an—1 ). The subscript indicates an element’s position within the list. Using this notation, the empty list
would appear as ().

4.2.1.1. Defining the ADT

What basic operations do we want our lists to support? Our common intuition about lists tells us that a list should be
able to grow and shrink in size as we insert and remove elements. We should be able to insert and remove
elements from anywhere in the list. We should be able to gain access to any element’s value, either to read it or to
change it. We must be able to create and clear (or re%réigalize) lists. It is also convenient to access the next or



previous element from the “current” one.

Now we can define the ADT for a list object in terms of a set of operations on that object. We will use an interface to
formally define the list ADT. List defines the member functions that any list implementation inheriting from it must
support, along with their parameters and return types.

True to the notion of an ADT, an interface does not specify how operations are implemented. Two complete
implementations are presented later in later modules, both of which use the same list ADT to define their operations.
But they are considerably different in approaches and in their space/time tradeoffs.

The code below presents our list ADT. Any implementation for a container class such as a list should be able to
support different data types for the elements. One way to do this in Java is to store data values of type Object.
Languages that support generics (Java) or templates (C++) give more control over the element types.

The comments given with each member function describe what it is intended to do. However, an explanation of the
basic design should help make this clearer. Given that we wish to support the concept of a sequence, with access to
any position in the list, the need for many of the member functions such as insert and moveToPos is clear. The key
design decision embodied in this ADT is support for the concept of a current position. For example, member
moveToStart sets the current position to be the first element on the list, while methods next and prev move the
current position to the next and previous elements, respectively. The intention is that any implementation for this
ADT support the concept of a current position. The current position is where any action such as insertion or deletion
will take place. An alternative design is to factor out position as a separate position object, sometimes referred to as
an iterator.

Java (Generic)

// List class ADT. Generalize by using "Object" for the element type.
public interface List { // List class ADT
// Remove all contents from the list, so it is once again empty
public void clear();

// Insert "it" at the current Llocation
// The client must ensure that the Llist's capacity is not exceeded
public boolean insert(Object it);

// Append "it" at the end of the Llist
// The client must ensure that the List's capacity 1is not exceeded
public boolean append(Object it);

// Remove and return the current element
public Object remove() throws NoSuchElementException;

// Set the current position to the start of the List
public void moveToStart();

// Set the current position to the end of the Llist
public void moveToEnd();

// Move the current position one step left, no change 1if already at beginning
public void prev();
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// Move the current position one step right, no change 1if already at end
public void next();

// Return the number of elements in the Llist
public int length();

// Return the position of the current element
public int currPos();

// Set the current position to "pos"
public boolean moveToPos(int pos);

// Return true 1if current position is at end of the Llist
public boolean isAtEnd();

// Return the current element
public Object getValue() throws NoSuchElementException;

public boolean isEmpty();
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Since insertions take place at the current position, and since we want to be able to insert to the front or the t
list as well as anywhere in between, there are actually $n+1$ possible "current positions" when there are $n¢
in the list.

The List member functions allow you to build a list with elements in any desired order, and to access any desired
position in the list. You might notice that the clear method is a “convenience” method, since it could be
implemented by means of the other member functions in the same asymptotic time

A list can be iterated through as follows:

Java (Generic)

for (L.moveToStart(); !L.isAtEnd(); L.next()) {
it = L.getValue();
doSomething(it);

}
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In this example, each element of the list in turn is stored in it, and passed to the doSomething function. The loop
terminates when the current position reaches the end of the list.

The list class declaration presented here is just one of many possible interpretations for lists. Our list interface
provides most of the operations that one naturally expects to perform on lists and serves to illustrate the issues
relevant to implementing the list data structure. As an example of using the list ADT, here is a function to return true
if there is an occurrence of a given integer in the list, and false otherwise. The find method needs no knowledge
about the specific list implementation, just the list ADT.

Java (Generic)

// Return true if kR is in list L, false otherwise
static boolean find(List L, Object k) {
for (L.moveToStart(); !L.isAtEnd(); L.next())
if (k == L.getValue()) return true; // Found kR
return false; // kR not found

}

In languages that support it, this implementation for find could be rewritten as a generic or template with respect to
the element type. While making it more flexible, even generic types still are limited in their ability to handle different
data types stored on the list. In particular, for the find function generic types would only work when the description
for the object being searched for (k in the function) is of the same type as the objects themselves. They also have to
be comparable when using the == operator. A more realistic situation is that we are searching for a record that
contains a key field whose value matches k. Similar functions to find and return a composite type based on a key
value can be created using the list implementation, but to do so requires some agreement between the list ADT and
the find function on the concept of a key, and on how keys may be compared.

There are two standard approaches to implementing lists, the array-based list, and the linked list.

4.2.2. List ADT Programming Exercise

X278: ListADT

Use appropriate method calls from the List ADT to create the following list:
<419|2330>
You should assume that L is passed to the function as an empty list.

Your Answer: Feedback
1 public List buildList(List L) Your feedback will aj
2 { answer.
3
4}
5
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Check my answer! Reset
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04.03 Array-Based List Implementation

Due No Due Date Points 3 Submitting an external tool

04.03 Array-Based List Implementation

4.3. Array-Based List Implementation

4.3.1. Array-Based List Implementation

Here is an implementation for the array-based list, named AList. AList inherits from the List ADT,and so must
implement all of the member functions of List.

Java

// Array-based list implementation
class AList<E> implements List<E> {

private E listArray[]; // Array holding list elements
private static final int DEFAULT_SIZE = 10; // Default size

private int maxSize; // Maximum size of Llist
private int listSize; // Current # of list items
private int curr; // Position of current element

// Constructors
// Create a new list object with maximum size "size"
@SuppressWarnings("unchecked") // Generic array allocation
AlList(int size) {

maxSize = size;

listSize = curr = 0;

listArray = (E[])new Object[size]; // Create ListArray
}
// Create a list with the default capacity
AList() {
this (DEFAULT_SIZE); // Just call the other constructor
}
public void clear() { // Reinitialize the Llist
listSize = curr = 0; // Simply reinitialize values

}

// Insert "it" at current position
public boolean insert(E it) {

if (listSize >= maxSize) {
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return talse;

}

for (int i=listSize; i>curr; i--) { // Shift elements up
listArray[i] = listArray[i-1]; //  to make room

}

listArray[curr] = it;

listSize++; // Increment Llist size

return true;

}

// Append "it" to Llist
public boolean append(E it) {
if (listSize >= maxSize) {
return false;
}
listArray[listSize++] = it;
return true;

}

// Remove and return the current element
public E remove() throws NoSuchElementException {
if ((curr<@) || (curr>=listSize)) { // No current element
throw new NoSuchElementException("remove() in AList has current of " + curr + " and
+ listSize + " that is not a a valid element");
}
E it = listArray[curr]; // Copy the element
for(int i=curr; i<listSize-1; i++) {// Shift them down
listArray[i] = listArray[i+1];

iistsize--; // Decrement size
return it;

}

public void moveToStart() { // Set to front
curr = 0;

}

public void moveToEnd() { // Set at end
curr = listSize;
}
public void prev() { // Move Lleft
if (curr = 0) {
curr--;
}

}
public void next() { // Move right

if (curr < listSize) {

curr++;
}

}

public int length() { // Return Llist size
return listSize;

}

public int currPos() { // Return current position

return curr;
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// Set current list position to "pos"”
public boolean moveToPos(int pos) {
if ((pos < @) || (pos > listSize)) {
return false;
}
curr = pos;
return true;

}

// Return true 1if current position is at end of the Llist
public boolean isAtEnd() {
return curr == listSize;

}

// Return the current element
public E getValue() throws NoSuchElementException {
if ((curr < @) || (curr >= listSize)) {// No current element

+ listSize + " that is not a a valid element");

}

return listArray[curr];

}

//Tell if the list 1s empty or not
public boolean isEmpty() {
return listSize == 0;
}
}

throw new NoSuchElementException("getvalue() in AList has current of " + curr +

a
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Let's take a look at the private data members for class AList.

class AList implements List {
private Object listArray[];

private int maxSize; // Maximum size of list
private int listSize; // Current # of list items
private int curr; // Position of current element

18 2\ e )

// Array holding list elements
private static final int DEFAULT SIZE = 10; // Default size



N N NN

Class AList stores the list elements in the first 1istSize contiguous array positions. In this example, 1istSi:

(13]12|20] 8| 3 )
0

4.3.1.1. Insert

Because the array-based list implementation is defined to store list elements in contiguous cells of the array, the
insert, append, and remove methods must maintain this property.
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Inserting an element at the head of an array-based list requires shifting all existing elements in the array by oi
toward the tail.

// Insert "it" at current position

public boolean insert(Object it) {
if (listSize >= maxSize) return false;
for (int i=listSize; i>curr; i--) // Shift elements

listArray[i] = listArray[i-1]; //  to make room

listArray[curr] = it;
listSize++; // Increment list
return true;

}
4.3.1.2. Insert Practice Exericse
Practicing Array-Based List Insertion Proficiency Exercise Current score: O out of
5
Your task in this exercise is to show the behavior for array-based list insertion. In the Answer

array displayed below, the "current" position is 2.

The value to insert is 45, and it is to be inserted into the "current" position.

To mnve an element click an it (ta hiahliaht it\ then clitR8n where vorr want it tno an Need help?
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You can insert the new value 45 into a highlighted array position by clicking the
"Insert" button.

[ Reset ][ Insert ]

@ 72 |431|659| 56 ]

4.3.2. Append and Remove
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Inserting at the tail of the list is easy.

// Append "it" to list

public boolean append(Object it) {
1311220 8 | 3 J . . . .
if (listSize >= maxSize) return false;
0O 1 2 3 4 5 6 7 listArray[listSize++] = it;

maxSize return true;
}
listSize

Removing an element from the head of the list is similar to insert in that all remaining elements must shift toward the
head by one position to fill in the gap. If we want to remove the element at position i, then n — i — 1 elements must
shift toward the head, as shown in the following slideshow.

1/6 (=) @ () ()
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Here is a list containing five elements. We will remove the value 12 in position 1 of the array, which is t

position.
// Remove and return the current element
¢ public Object remove() throws NoSuchElementException {
[13 12120 8 | 3 ] if ((curr<@) || (curr>=listSize)) // No current eler
0 1 2 3 4 5 6 7 throw new NoSuchElementException("remove() in AList

+ listSize +

Object it = listArray[curr];

that is not a a valid element");

// Copy the elemer

for(int i=curr; i<listSize-1; i++) // Shift them dowr

curr listArray[i] = listArray[i+1];

. . listSize--;
listSize return it;

// Decrement size

In the average case, insertion or removal each requires moving half of the elements, which is ©(n).

4.3.2.1. Remove Practice Exericise

Practicing Array-Based List Remove Proficiency Exercise

Your task in this exercise is to show the behavior for array-based list deletion. In the

array displayed below, the "current" position is 1.

Click on a value to highlight it, then click on the return box to remember the
highlighted element. Move elements in the array as appropriate by first clicking on

the element that you want to move (to highlight it), then click on where it goes.

(86 514({190 J
0 3 4 5 6

1 2

return | null
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Current score: O out of

5

Answer

Need help?



Aside from insert and remove, the only other operations that might require more than constant time are the
constructor and clear. The other methods for Class AList simply access the current list element or move the
current position. They all require ©(1) time.

4.3.3. Array-based List Practice Questions

Practicing Array List; Summary Questions Current score: O out of

5

Given an array-based list implementation, inserting a new element to the current Answer

position takes how long in the average case?

131



04.04 Linked Lists

Due No Due Date Points 2 Submitting an external tool

04.04 Linked Lists

4.4. Linked Lists

4.4 1. Linked Lists

In this module we present one of the two traditional implementations for lists, usually called a linked list. The linked
list uses dynamic memory allocation, that is, it allocates memory for new list elements as needed. The following
diagram illustrates the linked list concept. Here there are three nodes that are “linked” together. Each node has two
boxes. The box on the right holds a link to the next node in the list. Notice that the rightmost node has a diagonal
slash through its link box, signifying that there is no link coming out of this box.

=t et

Because a list node is a distinct object (as opposed to simply a cell in an array), it is good practice to make a
separate list node class. (We can also re-use the list node class to implement linked implementations for the stack
and queue data structures. Here is an implementation for list nodes, called the Link class. Objects in the Link
class contain an element field to store the element value, and a next field to store a pointer to the next node on the
list. The list built from such nodes is called a singly linked list, or a one-way list, because each list node has a
single pointer to the next node on the list.

Java (Generic)

class Link { // Singly Llinked List node class
private Object e; // Value for this node
private Link n; // Point to next node in Llist

// Constructors
Link(Object it, Link inn) { e = it; n = inn; }
Link(Link inn) { e = null; n = inn; }

Object element() { return e; } // Return the value
Object setElement(Object it) { return e = it; } // Set element value
Link next() { return n; } // Return next Link

I ink setNext(link inn) { return n = innt32 // Set next link
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The Link class is quite simple. There are two forms for its constructor, one with an initial element value and one
without. Member functions allow the link user to get or set the element and 1ink fields.
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Here is a graphical depiction for a linked list storing five integers. The value stored in a pointer variable is indic
arrow "pointing" to something. A NULL pointer is indicated graphically by a diagonal slash through a pointer
box. The vertical line between the nodes labeled 23 and 10 indicates the current position (immediately to the r
line).

20

Y

2 [}p{ 10 [}z [1-{ 5]

4.4.1.1. Why This Has Problems

There are a number of problems with the representation just described. First, there are lots of special cases to code
for. For example, when the list is empty we have no element for head, tail, and curr to point to. Implementing
special cases for insert and remove increases code complexity, making it harder to understand, and thus
increases the chance of introducing bugs.
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Another problem is that we have no link to get us to the preceding node (shown in yellow). So we have no e:
update the yellow node's next pointer.

head curr tail

1 % \
el

4.4 .1.2. A Better Solution

Fortunately, there is a fairly easy way to deal with all of the special cases, as well as the problem with deleting the
last node. Many special cases can be eliminated by implementing linked lists with an additional header node as the
first node of the list. This header node is a link node like any other, but its value is ignored and it is not considered to
be an actual element of the list. The header node sa\%% coding effort because we no longer need to consider



special cases for empty lists or when the current position is at one end of the list. The cost of this simplification is the
space for the header node. However, there are space savings due to smaller code size, because statements to
handle the special cases are omitted. We get rid of the remaining special cases related to being at the end of the list
by adding a “trailer” node that also never stores a value.

The following diagram shows initial conditions for a linked list with header and trailer nodes.

head curr tail

1
null )m

Here is what a list with some elements looks like with the header and trailer nodes added.

head curr tail

[rar {20 [3{z3 [Hp{ 10 [3{ 2 [F{ 5 [Ffrwi]]

Adding the trailer node also solves our problem with deleting the last node on the list, as we will see when we take a
closer look at the remove method’s implementation.

4.4.1.3. Linked List Implementation

Here is the implementation for the linked list class, named LList.

Java (Generic)

import java.util.NoSuchElementException;

// Linked Llist implementation
class LList implements List {

private Link head; // Pointer to List header
private Link tail; // Pointer to last element
private Link curr; // Access to current element
private int listSize; // Size of Llist

// Constructors
LList(int size) { this(); } // Constructor -- Ignore size
LList() { clear(); }

// Remove all elements

public void clear() {
curr = tail = new Link(null); // Create trailer
head = new Link(tail); // Create header
listSize = 0;
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}

// Insert "it" at current position

public boolean insert(Object it) {
curr.setNext(new Link(curr.element(), curr.next()));
curr.setElement(it);
if (tail == curr) tail = curr.next(); // New tail
listSize++;
return true;

}

// Append "it" to list

public boolean append(Object it) {
tail.setNext(new Link(null));
tail.setElement(it);
tail = tail.next();
listSize++;
return true;

}

// Remove and return current element
public Object remove () throws NoSuchElementException {
if (curr == tail) // Nothing to remove
throw new NoSuchElementException("remove() in LList has current of " + curr +
+ listSize + " that is not a a valid element");

and

Object it = curr.element(); // Remember value
curr.setElement(curr.next().element()); // Pull forward the next element
if (curr.next() == tail) tail = curr; // Removed last, move tail
curr.setNext(curr.next().next()); // Point around unneeded Link
listSize--; // Decrement element count
return it; // Return value

}

public void moveToStart() { curr = head.next(); } // Set curr at Llist start
public void moveToEnd() { curr = tail; } // Set curr at list end

// Move curr one step left; no change if now at front
public void prev() {
if (head.next() == curr) return; // No previous element
Link temp = head;
// March down Llist until we find the previous element
while (temp.next() != curr) temp = temp.next();
curr = temp;

}

// Move curr one step right; no change if now at end
public void next() { if (curr != tail) curr = curr.next(); }

public int length() { return listSize; } // Return Llist Llength

// Return the position of the current element
public int currPos() {

Link temp = head.next();
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for (i=0; curr != temp; i++)
temp = temp.next();

return i;

}

// Move down list to "pos" position

public boolean moveToPos(int pos) {
if ((pos < @) || (pos > listSize)) return false;
curr = head.next();
for(int i=0; i<pos; i++) curr = curr.next();
return true;

}

// Return true 1if current position is at end of the Llist
public boolean isAtEnd() { return curr == tail; }

// Return current element value.
public Object getValue() throws NoSuchElementException {
if (curr == tail) // No current element
throw new NoSuchElementException("getvalue() in LList has current of " + curr + " a
+ listSize + " that is not a a valid element");
return curr.element();

}

// Check if the Llist is empty
public boolean isEmpty() { return listSize == 0; }
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Let's look at the data members for class LList.

class LList implements List {

private Link head; // Pointer to list header
private Link tail; // Pointer to last element
private Link curr; // Access to current element
private int listSize; // Size of list
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Now we look at the constructors for class LList.

// Constructors
LList(int size) { this(); } // Constructor -- Ignore size
LList() { clear(); }

// Remove all elements

public void clear() {
curr = tail = new Link(null); // Create trailer
head = new Link(tail); // Create header
listSize = 0;
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The linked list before insertion. 15 is the value to be inserted.

it h%ad c%rir t;\;ll

null > 35 > 23 > 12 > null ’

// Insert "it" at current position

public boolean insert(Object it) {
curr.setNext(new Link(curr.element(), curr.next()));
curr.setElement(it);
if (tail == curr) tail = curr.next(); // New tail
listSize++;
return true;

Here are some special cases for linked list insertion: Inserting at the end, and inserting to an empty list.
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Here is an example showing insertion at the end of the list. 15 is the value to be inserted.
137



it // Insert "it" at current position
public boolean insert(Object it) {

head curr tail
curr.setNext(new Link(curr.element(), curr.ne»
% v curr.setElement(it);
‘null > 20 I; null if (tail == curr) tail = curr.next(); // New

listSize++;
return true;

Khan.randRange(4, 6) Khan.randRange(0, 999) Khan.randRange(0, arr_size-1 - 2)
llistInsertPRO.initJSAV (arr_size, insert_pos,insert value)

Your task in this exercise is to show the behavior for linked list insertion. You must insert the value insert value
to the current position. In the process, you will need to create a new node and move some node values and
pointers.

To move an element value from one node to another, click on it (to highlight it), then click on the element
position in the node where you want it to go. You can insert the new value insert_value into a highlighted node
by clicking the "Insert" button. You can create a new link node by clicking the "NewNode" button. To change a
pointer, click on its box (on the right side of the node) to highlight it, then click on the node that you want it to
point to.

| Reset H NewNode H Insert ]

[llistInsertPRO.userInput]

if (!listInsertPRO.checkAnswer() && !guess[0]) { return ""; // User did not click, and correct answer is not //
initial array state } else { return llistiInsertPRO.checkAnswer(arr_size); }

You want to reproduce the behavior of the insertion function. Try starting with a new node.

Remember that the new node has to come after the current node in the list, but we want the new value to appear
before the the current node's value.

So move the current node's value to the new node's value, then use "insert" to put the new value into the current
node.

Now you need to fix up the pointers. Click the new node's pointer box, then click the node after current. Click
the current node's pointer box, then click the new node.
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4.4.2. Linked List Remove
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Now we look at the remove method.

head curr tail

‘null > 23 8 > 35 H 10 Hnull ’

Y

// Remove and return current element
public Object remove () throws NoSuchElementException {
if (curr == tail) // Nothing to remove
throw new NoSuchElementException("remove() in LList has current of " + curr +

+ listSize + that is not a a valid element");

Object it = curr.element(); // Remember value
curr.setElement(curr.next().element()); // Pull forward the next element
if (curr.next() == tail) tail = curr; // Removed last, move tail
curr.setNext(curr.next().next()); // Point around unneeded link
listSize--; // Decrement element count
return it; // Return value

Khan.randRange(4, 6) Khan.randRange(0, arr_size-2) llistRemovePRQO.initJSAV(arr_size, curr_pos)

Your task in this exercise is to show the behavior for Linked list deletion. You must delete the element in the
current position.

To move an element, click on it (to highlight it), then click on the element position in the node where you want it
to go. To set the "return" value, click on the element position in the node you want to return (to highlight it), then
click on the return value box to set it to the highlighted value. You can make a node's "next" pointer point to
"null" by first clicking the pointer for the node and then clicking the "makenull" button. To change the target of
labels, such as "curr" and "tail", click on the label (to highlight it), then click on the node you want it to point to.

[ Reset][rnakenun|
[llistRemovePRO.userInput]
if (!llistRemovePRO.checkAnswer(arr_size, curr_pos) %‘g& lguess[0]) { return ""; // User did not click, and




correct answer 1s not // initial array state } else {return llistRemovePRO.checkAnswer(arr_size, curr_pos);}

If "curr" points to the same node as "tail", the default list is a correct answer. Otherwise, the first step could be to
remember the value of the "curr" node.

Copy value to "curr" from the node following 'curr'.

If "curr" points to the node proceding tail, sets the "curr" node to point to "null". Label "tail" should point to the
current node. Otherwise, the "curr" node should point to the following node of the node it used to point to.
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Finally, we will look at how a few other methods work.

head curr tail

\ 4
o
Y

‘null > 23

35 > 10 > null ’

140



Implementations for the remaining operations each require ©(1) time.
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04.05 Comparison of List Implementations

Due No Due Date Points 2 Submitting an external tool

04.05 Comparison of List Implementations

4.5. Comparison of List Implementations

4.5.1. Space Comparison

Now that you have seen two substantially different implementations for lists, it is natural to ask which is better. In
particular, if you must implement a list for some task, which implementation should you choose?

Given a collection of elements to store, they take up some amount of space whether they are simple integers or
large objects with many fields. Any container data structure like a list then requires some additional space to
organize the elements being stored. This additional space is called overhead.

Array-based lists have the disadvantage that their size must be predetermined before the array can be allocated.
Array-based lists cannot grow beyond their predetermined size. Whenever the list contains only a few elements, a
substantial amount of space might be tied up in a largely empty array. This empty space is the overhead required by
the array-based list. Linked lists have the advantage that they only need space for the objects actually on the list.
There is no limit to the number of elements on a linked list, as long as there is free store memory available. The
amount of space required by a linked list is ©(n), while the space required by the array-based list implementation is
Q(n), but can be greater.

Array-based lists have the advantage that there is no wasted space for an individual element. Linked lists require
that an extra pointer for the next field be added to every list node. So the linked list has these next pointers as
overhead. If the element size is small, then the overhead for links can be a significant fraction of the total storage.
When the array for the array-based list is completely filled, there is no wasted space, and so no overhead. The
array-based list will then be more space efficient, by a constant factor, than the linked implementation.

A simple formula can be used to determine whether the array-based list or the linked list implementation will be
more space efficient in a particular situation. Call n the number of elements currently in the list, P the size of a
pointer in storage units (typically four bytes), E the size of a data element in storage units (this could be anything,
from one bit for a Boolean variable on up to thousands of bytes or more for complex records), and D the maximum
number of list elements that can be stored in the array. The amount of space required for the array-based list is DEF,
regardless of the number of elements actually stored in the list at any given time. The amount of space required for
the linked list is n(P + E). The smaller of these expressions for a given value n determines the more space-efficient
implementation for n elements. In general, the linked implementation requires less space than the array-based
implementation when relatively few elements are in the list. Conversely, the array-based implementation becomes
more space efficient when the array is close to full. Using the equation, we can solve for n to determine the break-
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occurs when
n > DE/(P + E).

If P = E, then the break-even point is at D/2. This would happen if the element field is either a four-byte int value
or a pointer, and the next field is a typical four-byte pointer. That is, the array-based implementation would be more
efficient (if the link field and the element field are the same size) whenever the array is more than half full.

As a rule of thumb, linked lists are more space efficient when implementing lists whose number of elements varies
widely or is unknown. Array-based lists are generally more space efficient when the user knows in advance
approximately how large the list will become, and can be confident that the list will never grow beyond a certain limit.

4 * Khan.randRange(1,2) Khan.randRange(1, 16) P+D listOverhead.genAnswer(P, D)

Assume that for some list implementation, a pointer requires P bytes and a data object requires D bytes. Type a
fraction (like "1/2") to show how full the array should be for the break even point, that is, the point beyond
which the array-based list implementation needs less space than the linked list implementation. Give your
fraction in lowest terms.

ANS

The overhead is P and the total space needed is SUM.
As the array fills up, its overhead decreases.

The pointer space (P bytes) is overhead.

The bigger the overhead fraction, the less the array needs to be better. The bigger the data field, the more the
array needs to be better.

The break-even point is at D/SUM.

If you have values like 4/8, reduce to 1/2.

4.5.2. Time Comparison

Array based lists are faster for access by posmon Positions can easily be adjusted forwards or backwards by the
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next ana prev metnoas. 1Nese operauons aiways lake o(l) ume. In conuast, singly Ilinkea Ilsts nave no explicit
access to the previous element, and access by position requires that we march down the list from the front (or the
current position) to the specified position. Both of these operations require ©(n) time in the average and worst
cases, if we assume that each position on the list is equally likely to be accessed on any call to prev or moveToPos.

Given a pointer to a suitable location in the list, the insert and remove methods for linked lists require only ©(1)
time. Array-based lists must shift the remainder of the list up or down within the array. This requires ©(n) time in the
average and worst cases. For many applications, the time to insert and delete elements dominates all other
operations. For this reason, linked lists are often preferred to array-based lists.

When implementing the array-based list, an implementor could allow the size of the array to grow and shrink
depending on the number of elements that are actually stored. This data structure is known as a dynamic array.
For example, both the Java and C++/STL Vector classes implement a dynamic array, and JavaScript arrays are
always dynamic. Dynamic arrays allow the programmer to get around the limitation on the traditional array that its
size cannot be changed once the array has been created. This also means that space need not be allocated to the
dynamic array until it is to be used. The disadvantage of this approach is that it takes time to deal with space
adjustments on the array. Each time the array grows in size, its contents must be copied. A good implementation of
the dynamic array will grow and shrink the array in such a way as to keep the overall cost for a series of
insert/delete operations relatively inexpensive, even though an occasional insert/delete operation might be
expensive. A simple rule of thumb is to double the size of the array when it becomes full, and to cut the array size in
half when it becomes one quarter full. To analyze the overall cost of dynamic array operations over time, we need to
use a technique known as amortized analysis.

4.5.2 1. Practice Questions
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4.6. Doubly Linked Lists

4.6.1. Doubly Linked Lists

The singly linked list allows for direct access from a list node only to the next node in the list. A doubly linked list
allows convenient access from a list node to the next node and also to the preceding node on the list. The doubly
linked list node accomplishes this in the obvious way by storing two pointers: one to the node following it (as in the
singly linked list), and a second pointer to the node preceding it.

head curr tail
‘null ’20\’23\’12\’15\’nu|l’

Figure 4.6.1: A doubly linked list.

The most common reason to use a doubly linked list is because it is easier to implement than a singly linked list.
While the code for the doubly linked implementation is a little longer than for the singly linked version, it tends to be
a bit more “obvious” in its intention, and so easier to implement and debug. Whether a list implementation is doubly
or singly linked should be hidden from the List class user.

Like our singly linked list implementation, the doubly linked list implementation makes use of a header node. We
also add a tailer node to the end of the list. The tailer is similar to the header, in that it is a node that contains no
value, and it always exists. When the doubly linked list is initialized, the header and tailer nodes are created. Data
member head points to the header node, and tail points to the tailer node. The purpose of these nodes is to
simplify the insert, append, and remove methods by eliminating all need for special-case code when the list is
empty, or when we insert at the head or tail of the list.

In our implementation, curr will point to the current position (or to the trailer node if the current position is at the
end of the list).

Here is the complete implementation for a Link class to be used with doubly linked lists. This code is a little longer
than that for the singly linked list node implementation since the doubly linked list nodes have an extra data
member.

Java (Generic)

class Link { // Doubly Llinked list node
private Object e; // Value for this node
private Link n; // Pointer to next node in Llist
private Link p; // Pointer to previous node

// Constructors
Link(Object it, Link inp, Link inn) { e = it; p = inp; n = inn; }
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// Get and set methods for the data members

public Object element() { return e; } // Return the value
public Object setElement(Object it) { return e = it; } // Set element value
public Link next() { return n; } // Return next Link
public Link setNext(Link nextval) { return n = nextval; } // Set next Link
public Link prev() { return p; } // Return prev Link
public Link setPrev(Link prevval) { return p = prevval; } // Set prev Link
}
4.6.1.1. Insert

The following slideshows illustrate the insert and append doubly linked list methods. The class declaration and the
remaining member functions for the doubly linked list class are nearly identical to the singly linked list version. While
the code for these methods might be a little longer than their singly linked list counterparts (since there is an extra
pointer in each node to deal with), they tend to be easier to understand.

& © & &

The linked list before insertion. 15 is the value to be inserted.

head curr tail

it null 23| T¢ 8 35 10 | Te null

Y

Y

public boolean insert(Object it) {
curr = new Link(it, curr.prev(), curr);
curr.prev().setNext(curr);
curr.next().setPrev(curr);
listSize++;
return true;

4.6.1.2. Append

= © 0 &

The append method works almost the same as insertion. We will insert the value 15.
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head curr tail

i Y A

it ‘ null 23| 35 10 null

Y

4
(o]
N
N
N

y

public boolean append(Object it) {
tail.setPrev(new Link(it, tail.prev(), tail));
tail.prev().prev().setNext(tail.prev());
if (curr == tail) curr = tail.prev();
listSize++;

return true;

4.6.1.3. Remove

& © O &

Now we will look at the remove method. Here is the linked list before we remove the node with value 8.

head curr tail
null 21 23| 2L| 8 35 null

public Object remove() {

if (curr == tail) return null; // Nothing to remove
Object it = curr.element(); // Remember value
curr.prev().setNext(curr.next()); // Remove from list

curr.next().setPrev(curr.prev());

curr = curr.next();

listSize--; // Decrement node count
return it; // Return value removed

4.6.1.4. Prev

& & O &
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The prev method is easy.

head curr tail
‘nullz\231 81‘351‘101‘nuu’

public void prev() {
if (curr.prev() != head) // Can't back up from list head
curr = curr.prev();

The only disadvantage of the doubly linked list as compared to the singly linked list is the additional space used.
The doubly linked list requires two pointers per node, and so in the implementation presented it requires twice as
much overhead as the singly linked list.

4.6.1.5. Mangling Pointers

There is a space-saving technique that can be employed to eliminate the additional space requirement, though it will
complicate the implementation and be somewhat slower. Thus, this is an example of a space/time tradeoff. It is
based on observing that, if we store the sum of two values, then we can get either value back by subtracting the
other. That is, if we store a + b in variable ¢, then b = ¢ — a and a = ¢ — b. Of course, to recover one of the values out
of the stored summation, the other value must be supplied. A pointer to the first node in the list, along with the value
of one of its two link fields, will allow access to all of the remaining nodes of the list in order. This is because the
pointer to the node must be the same as the value of the following node’s prev pointer, as well as the previous
node’s next pointer. It is possible to move down the list breaking apart the summed link fields as though you were
opening a zipper.

The principle behind this technique is worth remembering, as it has many applications. The following code fragment
will swap the contents of two variables without using a temporary variable (at the cost of three arithmetic
operations).

Java (Generic)

a=a+ b;
b=a-b; // Now b contains original value of a
a =a - b; // Now a contains original value of b
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04.07 List Element Implementations

Due No Due Date Points 1 Submitting an external tool

04.07 List Element Implementations

4.7. List Element Implementations

4.7.1. List Element Implementations

When designing any container class, there are a number of design choices to be made regarding the data
elements.

What to do if something can appear multiple times on a list? One option is to use a reference to elements. Another
is to store separate copies. In general, the larger the elements and the more that they are duplicated, the more likely
that pointers to shared elements is the better approach.

& © O &

This slide show values stored directly in the list elements. If something appears multiple times, then there a
copies of that thing. For small elements such as an integer, this makes sense.

[21 35|21 9]

head curr tail

null 21 > 35 > 21 -—){ 9 -—){null ’

\ 4
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4.7.1.1. Homogeneity

The next issue to consider is whether to enforce homogeneity in the list elements. That is, should lists be restricted
so that all data elements stored are of the same object type? Or should it be possible to store different types?

If you want to enforce homogeneity, the most rigid way is to simply define the elements to be of a fixed type. But that
does not help if you want one list to store integers while another stores strings. A much more flexible approach is to
use Java generics or C++ templates. In this way, the compiler will enforce that a given list will only store a single
data type, while still allowing different lists to have different data types. Another approach is to store an object of the
appropriate type in the header node of the list (perhaps an object of the appropriate type is supplied as a parameter
to the list constructor), and then check that all insert operations on that list use the same element type. This
approach is useful in a language like JavaScript that does not use strong typing, but does allow a program to test
the type of an object.

In some applications, the designer would like to allow a given list store elements with different types. In Java,
declaring the element to be of type Object will stop the compiler from enforcing any type restrictions. In C++, a
similar effect can be achieved by using void* pointers.

& © O &

In some applications, the user would like to define the class of the data element that is stored on a given lisi
never permit objects of a different class to be stored on that same list.

head curr tail
1 h! A
/ > -—)‘ \\-—)( null ’

null

\ 4
\ 4

4 N 4 N\ ( N\ (
ID : 546457 ID : 546213 ID : 546805 ID:£
Name : Jake Name : Mike Name : John Name
Phone : 5405642511 Phone : 5405642513 Phone : 5405642552 Phone : 5
Email : example@vt.edu Email : example@vt.edu Email : example@vt.edu Email : exa
Office : 212 Office : 212 Office : 212 Offic

. / . / (. / (.

4.7.1.2. Element Deletion

Our last design issue is what to do to the list elements when the list itself is deleted? This is a serious concern in a
language like C++ that does not support automatic garbage collection.
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In this example, consider what happens when the list is deleted.

N

1 g ]
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A 4
A 4
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~
/

N\ 4 N\ 4 N\ 4
( ID : 546457 ID : 546213 ID : 546805 ID: 54
Name : Jake Name : Mike Name : John Name
Phone : 5405642511 Phone : 5405642513 Phone : 5405642552 Phone : 54

Email : example@vt.edu

Email : example@vt.edu

Email : example@vt.edu

Email : exam

Office : 212

Office : 212

Office : 212

Office

4.7.1.3. Practice Questions

Practicing List: Summary Questions

Current score: O out of

5
Answer TRUE or FALSE. Answer
Linked lists are better than array-based lists when the final size of the list is known
in advance
?
O True Need help?
O False
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04.08 Stacks

Due No Due Date Points 2 Submitting an external tool

04.08 Stacks

4.8. Stacks

4.8.1. Stack Terminology and Implementation

The stack is a list-like structure in which elements may be inserted or removed from only one end. While this
restriction makes stacks less flexible than lists, it also makes stacks both efficient (for those operations they can do)
and easy to implement. Many applications require only the limited form of insert and remove operations that stacks
provide. In such cases, it is more efficient to use the simpler stack data structure rather than the generic list. For
example, the freelist is really a stack.

Despite their restrictions, stacks have many uses. Thus, a special vocabulary for stacks has developed.
Accountants used stacks long before the invention of the computer. They called the stack a “LIFO” list, which stands
for “Last-In, First-Out.” Note that one implication of the LIFO policy is that stacks remove elements in reverse order
of their arrival.

The accessible element of the stack is called the top element. Elements are not said to be inserted, they are
pushed onto the stack. When removed, an element is said to be popped from the stack. Here is a simple stack
ADT.

Java (Generic)

public interface Stack { // Stack class ADT
// Reinitialize the stack.
public void clear();

// Push "it" onto the top of the stack
public boolean push(Object it);

// Remove and return the element at the top of the stack
public Object pop();

// Return a copy of the top element
public Object topValue();

// Return the number of elements in the stack
public int length(); 154




// Return true 1if the stack is empty
public boolean isEmpty();

}

As with lists, there are many variations on stack implementation. The two approaches presented here are the array-
based stack and the linked stack, which are analogous to array-based and linked lists, respectively.

4.8.1.1. Array-Based Stacks

Here is a complete implementation for the array-based stack class.

Java (Generic)

class AStack implements Stack {
private Object stackArray[]; // Array holding stack
private static final int DEFAULT_SIZE = 10;
private int maxSize; // Maximum size of stack
private int top; // First free position at top

// Constructors
AStack(int size) {
maxSize = size;
top = 0,
stackArray = new Object[size]; // Create stackArray

}
AStack() { this(DEFAULT_SIZE); }

public void clear() { top = 0; } // Reinitialize stack

// Push "it" onto stack
public boolean push(Object it) {
if (top >= maxSize) return false;
stackArray[top++] = it;
return true;

}

// Remove and return top element
public Object pop() {
if (top == @) return null;
return stackArray[--top];

}

public Object topValue() { // Return top element
if (top == @) return null;
return stackArray[top-1];

}

public int length() { return top; } // ﬁﬁfurn stack size



public boolean isEmpty() { return top == 9; } // Check if the stack is empty
}

= © & &

As with any array-based implementation, stackArray must be declared of fixed size when the stack is createc

class AStack implements Stack {

private Object stackArray[]; // Array holding stack
private static final int DEFAULT_SIZE = 10;
private int maxSize; // Maximum size of stack
private int top; // First free position at top
// Constructors
AStack(int size) {

maxSize = size;

top = 0O;

stackArray = new Object[size]; // Create stackArray

¥
AStack() { this(DEFAULT_SIZE); }

The array-based stack implementation is essentially a simplified version of the array-based list. The only important
design decision to be made is which end of the array should represent the top of the stack.

= © & &

One choice is to make the top be at position 0 in the array. In terms of list functions, all push and pop operati
then be on the element at position 0.

2
top @ [12 45| 5 | 81 ]
0
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Method push is easy.

public boolean push(Object it) {
[127 45| 5 | 81 j . .
if (top >= maxSize) return false;
0 4 5 6 7 stackArray[top++] = it;

1 2 3
top return true;
}
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4.8.2. Pop

= © O &

Now, for the implementation of pop. top is at the first free position, which is index 4 on the array.

[12 45| 5 | 81 J
0

1 5 6 7 public Object pop() {

2 3 4
top if (top == @) return null;

return stackArray[--top];

}
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04.09 Linked Stacks

Due No Due Date Points 2 Submitting an external tool

04.09 Linked Stacks

4.9. Linked Stacks

4.9.1. Linked Stack Implementation

The linked stack implementation is quite simple. Elements are inserted and removed only from the head of the list. A
header node is not used because no special-case code is required for lists of zero or one elements. Here is the
complete linked stack implementation.

Java (Generic)

// Linked stack implementation

class LStack implements Stack {
private Link top; // Pointer to first element
private int size; // Number of elements

// Constructors
LStack() { top = null; size = 0; }
LStack(int size) { top = null; size = 0; }

// Reinitialize stack
public void clear() { top = null; size = 0; }

// Put "it" on stack
public boolean push(Object it) {
top = new Link(it, top);
size++;
return true;

}

// Remove "it" from stack
public Object pop() {
if (top == null) return null;
Object it = top.element();
top = top.next();
size--;
return it;

} 160




public Object topValue() { // Return top value
if (top == null) return null;
return top.element();

}

// Return stack Llength
public int length() { return size; }

// Check 1if the stack 1is empty
public boolean isEmpty() { return size == 0; }

Here is a visual representation for the linked stack.

top
‘20 > 23 > 8 > 12 H15 ’

4.9.1.1. Linked Stack Push

= © & &

Here is the push operation. First we see the linked stack before push

to
[;i public boolean push(Object it) {
top = new Link(it, top);
8 > 12 > 15 size++;
return true;
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4.9.2. Linked Stack Pop

1/6

top

1

= © 0 &

Method pop is also quite simple.

public Object pop() {
if (top == null) return null;

‘23

1

12

Object it = top.element();

Y

15 top = top.next();

()

size--;

return it;
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4.9.2.1. Comparison of Array-Based and Linked Stacks

All operations for the array-based and linked stack implementations take constant time, so from a time efficiency
perspective, neither has a significant advantage. Another basis for comparison is the total space required. The
analysis is similar to that done for list implementations. The array-based stack must declare a fixed-size array
initially, and some of that space is wasted whenever the stack is not full. The linked stack can shrink and grow but
requires the overhead of a link field for every element.

When implementing multiple stacks, sometimes you can take advantage of the one-way growth of the array-based
stack by using a single array to store two stacks. One stack grows inward from each end as illustrated by the figure
below, hopefully leading to less wasted space. However, this only works well when the space requirements of the
two stacks are inversely correlated. In other words, ideally when one stack grows, the other will shrink. This is
particularly effective when elements are taken from one stack and given to the other. If instead both stacks grow at
the same time, then the free space in the middle of the array will be exhausted quickly.
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04.10 Queues
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04.10 Queues

4.10. Queues

4.10.1. Queue Terminology and Implementation

Like the stack, the queue is a list-like structure that provides restricted access to its elements. Queue elements may
only be inserted at the back (called an enqueue operation) and removed from the front (called a dequeue
operation). Queues operate like standing in line at a movie theater ticket counter. If nobody cheats, then newcomers
go to the back of the line. The person at the front of the line is the next to be served. Thus, queues release their
elements in order of arrival. In Britain, a line of people is called a “queue”, and getting into line to wait for service is
called “queuing up”. Accountants have used queues since long before the existence of computers. They call a
queue a “FIFO” list, which stands for “First-In, First-Out”. Here is a sample queue ADT. This section presents two
implementations for queues: the array-based queue and the linked queue.

Java (Generic)

public interface Queue { // Queue class ADT
// Reinitialize queue
public void clear();

// Put element on rear
public boolean enqueue(Object it);

// Remove and return element from front
public Object dequeue();

// Return front element
public Object frontValue();

// Return queue size
public int length();

// Return true 1if the queue 1is empty
public boolean isEmpty();
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4.10.1.1. Array-Based Queues

The array-based queue is somewhat tricky to implement effectively. A simple conversion of the array-based list

implementation is not efficient.

& © O &

Assume that there are n elements in the queue. By analogy to the array-based list implementation, we could r
all elements of the queue be stored in the first n positions of the array.

frontO & 45| 5 | 81 j

rearD O 1 2 3 4 5 6 7
IistSize

= © & &

A more efficient implementation can be obtained by relaxing the requirement that all elements of the queue |
the first n positions of the array. We still require that the queue be stored be in contiguous array positior

contents of the queue will be permitted to drift within the array.

& © O &

This implementation raises a new problem. When elements are removed from the queue, the front index incre:

front L 1713 [30] 4 ]
rear@ 0 1 2 3 4 5 6 7 8 9
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4.10.1.2. The Circular Queue

& © O &

The "drifting queue" problem can be solved by pretending that the array is circular and so allow the queue t
directly from the highest-numbered position in the array to the lowest-numbered position.

7 10
6 11
5 0

4321
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There remains one more serious, though subtle, problem to the array-based queue implementation. Ho
recognize when the queue is empty or full?
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If the value of front is fixed, then n + 1 different values for rear are needed to distinguish among the n + 1 states.
However, there are only n possible values for rear unless we invent a special case for, say, empty queues. This is
an example of the Pigeonhole Principle. The Pigeonhole Principle states that, given n pigeonholes and n +1
pigeons, when all of the pigeons go into the holes we can be sure that at least one hole contains more than one
pigeon. In similar manner, we can be sure that two of the n + 1 states are indistinguishable by the n relative values
of front and rear. We must seek some other way to distinguish full from empty queues.

One obvious solution is to keep an explicit count of the number of elements in the queue, or at least a Boolean
variable that indicates whether the queue is empty or not. Another solution is to make the array be of size n + 1, and
only allow n elements to be stored. Which of these solutions to adopt is purely a matter of the implementor’s taste in
such affairs. Our choice here is to use an array of size n + 1.

Here is an array-based queue implementation.

Java (Generic)

class AQueue implements Queue {
private Object queueArray[]; // Array holding queue elements
private static final int DEFAULT_SIZE = 10;

private int maxSize; // Maximum size of queue
private int front; // Index of front element
private int rear; // Index of rear element

// Constructors

AQueue(int size) {
maxSize = size + 1; // One extra space 1s allocated
rear = 0; front = 1;
queueArray = new Object[maxSize]; // Create queueArray

}
AQueue() { this(DEFAULT_SIZE); }

// Reinitialize
public void clear() { rear = 0; front = 1; }

// Put "it" in queue

public boolean enqueue(Object it) {
if (((rear+2) % maxSize) == front) return false; // Full
rear = (rear+l) % maxSize; // Circular increment
queueArray[rear] = it;
return true;

}

// Remove and return front value
public Object dequeue() {
if(length() == @) return null;
Object it = queueArray[front];
front = (front+l) % maxSize; // Circular increment
return it;
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// Return front value

public Object frontValue() {
if (length() == @) return null;
return queueArray[front];

}

// Return queue size
public int length() { return ((rear+maxSize) - front + 1) % maxSize; }

// Check 1if the queue 1is empty
public boolean isEmpty() { return front - rear == 1; }

4.10.1.3. Array-based Queue Implementation

= © & &

Member queueArray holds the queue elements...

class AQueue implements Queue {
private Object queueArray[]; // Array holding queue elements
private static final int DEFAULT_SIZE = 10;

private int maxSize; // Maximum size of queue
private int front; // Index of front element
private int rear; // Index of rear element

// Constructors

AQueue(int size) {
maxSize = size + 1; // One extra space is allocated
rear = 0; front = 1;
queueArray = new Object[maxSize]; // Create queueArray

}
AQueue() { this(DEFAULT_SIZE); }

In this implementation, the front of the queue is defined to be toward the lower numbered positions in the array (in
the counter-clockwise direction in the circular array), and the rear is defined to be toward the higher-numbered
positions. Thus, enqueue increments the rear pointer (modulus maxSize), and dequeue increments the front pointer.
Implementation of all member functions is straightforward.
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4.10.2. Array-based Dequeue Practice
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04.11 Linked Queues
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04.11 Linked Queues

4.11. Linked Queues

4.11.1. Linked Queues

The linked queue implementation is a straightforward adaptation of the linked list. Here is the linked queue class
declaration.

Java (Generic)

// Linked queue implementation

class LQueue implements Queue {
private Link front; // Pointer to front queue node
private Link rear; // Pointer to rear queue node
private int size; // Number of elements in queue

// Constructors
LQueue() { init(); }
LQueue(int size) { init(); } // Ignore size

// Initialize queue

void init() {
front = rear = new Link(null);
size = 0;

}

// Put element on rear

public boolean enqueue(Object it) {
rear.setNext(new Link(it, null));
rear = rear.next();
size++;
return true;

}

// Remove and return element from front
public Object dequeue() {
if (size == @) return null;
Object it = front.next().element(); /¥;;tore the value




tront.setNext(tront.next().next()); // Advance front

if (front.next() == null) rear = front; // Last element
size--;

return it; // Return element

}

// Return front element

public Object frontValue() {
if (size == @) return null;
return front.next().element();

}

// Return queue size
public int length() { return size; }

// Check if the queue is empty
public boolean isEmpty() { return size == 0; }

& © O &

Members front and rear are pointers to the front and rear queue elements, respectively.

// Linked queue implementation

front rear
class LQueue implements Queue {
Ei ai private Link front; // Pointer to front queue node
‘nu” 4___) 5 > 10 > 25 ’ private Link rear; // Pointer to rear queue node

private int size; // Number of elements in queue

// Constructors
LQueue() { init(); }
LQueue(int size) { init(); } // Ignore size
// Initialize queue
void init() {
front = rear = new Link(null);
size = 0;
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Let's look at how the enqueue operation works.

front rear // Put element on rear

% % public boolean enqueue(Object it) {
rear.setNext(new Link(it, null));

Y
w
Y

21 > 30 ’

‘nu" rear = rear.next();

size++;

return true;

4.11.2. Linked Dequeue

= © O &

Now for the dequeue operation.
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front rear
‘null > 3 > 21 30

// Remove and return element from front
public Object dequeue() {

if (size == 0) return null;

Object it = front.next().element(); // Store the v:
front.setNext(front.next().next()); // Advance fror
if (front.next() == null) rear = front; // Last ele
size--;

return it; // Return element

4.11.3. Comparison of Array-Based and Linked Queues

All member functions for both the array-based and linked queue implementations require constant time. The space
comparison issues are the same as for the equivalent stack implementations. Unlike the array-based stack
implementation, there is no convenient way to store two queues in the same array, unless items are always

transferred directly from one queue to the other.

4.11.3.1. Stack and Queue Summary Questions
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04.12 Linear Structure Summary Exercises

4.12. Linear Structure Summary Exercises

4.12.1. Practice Questions

Here are some general practice questions about various data structures in this chapter.

Practicing List Data Structures General Questions Current score: O out of
5

The term "FIFO" is associated with which data structure? Answer

O Stack

(O None of these

O Al of these Need help?
O List

O Freelist

O Queue

177



4.12.2. Chapter Review Questions

Here is a summary exercise with questions from everything in this chapter.
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Chapter 5: Binary Trees

OpenDSA License

OpenDSA is Copyright © 2013-2016 by Ville Karavirta and Cliff Shaffer.
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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5.1. Binary Trees Chapter Introduction

Tree structures enable efficient access and efficient update to large collections of data. Binary trees in particular
are widely used and relatively easy to implement. But binary trees are useful for many things besides searching.
Just a few examples of applications that trees can speed up include prioritizing jobs, describing mathematical
expressions and the syntactic elements of computer programs, or organizing the information needed to drive data
compression algorithms.

This chapter covers terminology used for discussing binary trees, tree traversals, approaches to implementing tree
nodes, and various examples of binary trees.
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05.02 Binary Trees

5.2. Binary Trees

5.2.1. Definitions and Properties

A binary tree is made up of a finite set of elements called nodes. This set either is empty or consists of a node
called the root together with two binary trees, called the left and right subtrees, which are disjoint from each other
and from the root. (Disjoint means that they have no nodes in common.) The roots of these subtrees are children of
the root. There is an edge from a node to each of its children, and a node is said to be the parent of its children.

If ni,n9,...,m, is @ sequence of nodes in the tree such that n; is the parent of n; +1 for 1 <i < k, then this
sequence is called a path from n; to n;. The length of the path is k£ — 1. If there is a path from node R to node M,
then R is an ancestor of M, and M is a descendant of R. Thus, all nodes in the tree are descendants of the root of
the tree, while the root is the ancestor of all nodes. The depth of a node M in the tree is the length of the path from
the root of the tree to M. The height of a tree is the depth of the deepest node in the tree. All nodes of depth d are
at level d in the tree. The root is the only node at level 0, and its depth is 0. A leaf node is any node that has two
empty children. An internal node is any node that has at least one non-empty child.

Figure 5.2.1: A binary tree. Node A is the root. Nodes B and C are A’s children. Nodes B and D together form a
subtree. Node B has two children: Its left child is the empty tree and its right child is D. Nodes A4, C, and E are
ancestors of G. Nodes D, E, and F make up level 2 of the tree; node A is at level 0. The edges from A to C to E to
G form a path of length 3. Nodes D, G, H, and I are leaves. Nodes A, B, C, E, and F are internal nodes. The depth
of I is 3. The height of this tree is 3.
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(a) (b)

(») (»)
e EMPTY EMPTY e
(c) (d)

Figure 5.2.2: Two different binary trees. (a) A binary tree whose root has a non-empty left child. (b) A binary tree
whose root has a non-empty right child. (c) The binary tree of (a) with the missing right child made explicit. (d) The
binary tree of (b) with the missing left child made explicit.

Figure 5.2.1 illustrates the various terms used to identify parts of a binary tree. Figure 5.2.2 illustrates an important
point regarding the structure of binary trees. Because all binary tree nodes have two children (one or both of which
might be empty), the two binary trees of Figure 5.2.2 are not the same.

Two restricted forms of binary tree are sufficiently important to warrant special names. Each node in a full binary
tree is either (1) an internal node with exactly two non-empty children or (2) a leaf. A complete binary tree has a
restricted shape obtained by starting at the root and filling the tree by levels from left to right. In the complete binary
tree of height d, all levels except possibly level d are completely full. The bottom level has its nodes filled in from the
left side.

Figure 5.2.3: Examples of full and complete binary trees.

Figure 5.2.3 illustrates the differences between full and complete binary trees. 1 There is no particular relationship
between these two tree shapes; that is, the tree of Figure 5.2.3 (a) is full but not complete while the tree of Figure
5.2.3 (b) is complete but not full. The heap data structure is an example of a complete binary tree. The Huffman
coding tree is an example of a full binary tree.

1
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While these definitions for full and complete binary tree are the ones most commonly used, they are not
universal. Because the common meaning of the words “full” and “complete” are quite similar, there is little that
you can do to distinguish between them other than to memorize the definitions. Here is a memory aid that you
might find useful: “Complete” is a wider word than “full”’, and complete binary trees tend to be wider than full
binary trees because each level of a complete binary tree is as wide as possible.

Practicing Tree Definition Summary Questions Current score: 0 out of
5
Which statement is false? Answer

(O Every non-root node in a binary tree has exactly one parent

(O Every node in a binary tree has exactly two children

Need help?
(O Every binary tree has at least one node
(O Every non-empty binary tree has exactly one root node
O None of the above
5.2.2. Practice Questions
Practicing Tree Definition Questions Current score: 0 out of
5
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How many nodes in the tree have at least one sibling? Answer

@ @ Need help?
01O
@

185



5.3. Binary Tree as a Recursive Data Structure

5.3.1. Binary Tree as a Recursive Data Structure

A recursive data structure is a data structure that is partially composed of smaller or simpler instances of the
same data structure. For example, linked lists and binary trees can be viewed as recursive data structures. A list
is a recursive data structure because a list can be defined as either (1) an empty list or (2) a node followed by a list.
A binary tree is typically defined as (1) an empty tree or (2) a node pointing to two binary trees, one its left child and
the other one its right child.

/ node followed by a list

4
(00)
Y
w
()}
Y
—
o

23

Left sub-tree is a binary tree \ e @ /

Right sub-tree is a binary tre

The recursive relationships used to define a structure provide a natural model for any recursive algorithm on the
structure.

= © & &

Suppose that you want to compute the sum of the values stored in a binary tree.

You
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5.4. The Full Binary Tree Theorem

Some binary tree implementations store data only at the leaf nodes, using the internal nodes to provide structure
to the tree. By definition, a leaf node does not need to store pointers to its (empty) children. More generally, binary
tree implementations might require some amount of space for internal nodes, and a different amount for leaf nodes.
Thus, to compute the space required by such implementations, it is useful to know the minimum and maximum
fraction of the nodes that are leaves in a tree containing n internal nodes.

Unfortunately, this fraction is not fixed. A binary tree of n internal nodes might have only one leaf. This occurs when
the internal nodes are arranged in a chain ending in a single leaf as shown in Figure 5.4.1. In this example, the
number of leaves is low because each internal node has only one non-empty child. To find an upper bound on the
number of leaves for a tree of n internal nodes, first note that the upper bound will occur when each internal node
has two non-empty children, that is, when the tree is full. However, this observation does not tell what shape of tree
will yield the highest percentage of non-empty leaves. It turns out not to matter, because all full binary trees with n
internal nodes have the same number of leaves. This fact allows us to compute the space requirements for a full
binary tree implementation whose leaves require a different amount of space from its internal nodes.

Q

\
'\ Any number of internal nodes

\

O

Figure 5.4.1: A tree containing many internal nodes and a single leaf.

Theorem 5.4.1

Full Binary Tree Theorem: The number of leaves in a non-empty full binary tree is one more than the number of
internal nodes.

Proof: The proof is by mathematical induction on n, the number of internal nodes. This is an example of the
style of induction proof where we reduce from an arbitrary instance of size n to an instance of size n — 1 that
meets the induction hypothesis.

i. Base Cases: The non-empty tree with zero internal nodes has one leaf node. A full binary tree with one
internal node has two leaf nodes. Thus, the base cases for n = 0 and n = 1 conform to the theorem.

ii. Induction Hypothesis: Assume that any full binary tree T containing n — 1 internal nodes has n leaves.
188



iii. Induction Step: Given tree T with n internal nodes, select an internal node I whose children are both leaf
nodes. Remove both of I's children, making I a leaf node. Call the new tree T'. T' has n — 1 internal nodes.
From the induction hypothesis, T’ has n leaves. Now, restore I's two children. We once again have tree T
with n internal nodes. How many leaves does T have? Because T’ has n leaves, adding the two children
yields n + 2. However, node I counted as one of the leaves in T’ and has now become an internal node. Thus,
tree T has n + 1 leaf nodes and n internal nodes.

By mathematical induction the theorem holds for all values of n > 0.

When analyzing the space requirements for a binary tree implementation, it is useful to know how many empty
subtrees a tree contains. A simple extension of the Full Binary Tree Theorem tells us exactly how many empty
subtrees there are in any binary tree, whether full or not. Here are two approaches to proving the following theorem,
and each suggests a useful way of thinking about binary trees.

Theorem 5.4.2
The number of empty subtrees in a non-empty binary tree is one more than the number of nodes in the tree.

Proof 1: Take an arbitrary binary tree T and replace every empty subtree with a leaf node. Call the new tree T'.
All nodes originally in T will be internal nodes in T/ (because even the leaf nodes of T have children in T'). T' is
a full binary tree, because every internal node of T now must have two children in T/, and each leaf node in T
must have two children in TV (the leaves just added). The Full Binary Tree Theorem tells us that the number of
leaves in a full binary tree is one more than the number of internal nodes. Thus, the number of new leaves that
were added to create T' is one more than the number of nodes in T. Each leaf node in T’ corresponds to an
empty subtree in T. Thus, the number of empty subtrees in T is one more than the number of nodes in T.

Proof 2: By definition, every node in binary tree T has two children, for a total of 2n children in a tree of n nodes.

Fyvians nAada avrant tha rant nAada hace Ana narant far a tAatal Af .. 1 nAndac with narante In Aathar winrde thara ara
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05.05 Binary Tree Traversals

5.5. Binary Tree Traversals

5.5.1. Binary Tree Traversals

Often we wish to process a binary tree by “visiting” each of its nodes, each time performing a specific action such as
printing the contents of the node. Any process for visiting all of the nodes in some order is called a traversal. Any
traversal that lists every node in the tree exactly once is called an enumeration of the tree’s nodes. Some
applications do not require that the nodes be visited in any particular order as long as each node is visited precisely
once. For other applications, nodes must be visited in an order that preserves some relationship.

5.5.1.1. Preorder Traversal

For example, we might wish to make sure that we visit any given node before we visit its children. This is called a
preorder traversal.

Figure 5.5.1: A binary tree for traversal examples.

Example 5.5.1
The preorder enumeration for the tree of Figure 5.5.1is ABDCEGFHIL

The first node printed is the root. Then all nodes of the left subtree are printed (in preorder) before any node of

the right subtree. 190
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Preorder traversal begins.

static void preorder(BinNode rt) {
if (rt == null) return; // Empty subtree - do nothing
visit(rt); // Process root node
preorder(rt.left()); // Process all nodes in left
preorder(rt.right()); // Process all nodes in right

rt

%

Y

Alternatively, we might wish to visit each node only after we visit its children (and their subtrees). For example, this
would be necessary if we wish to return all nodes in the tree to free store. We would like to delete the children of a
node before deleting the node itself. But to do that requires that the children’s children be deleted first, and so on.
This is called a postorder traversal.

5.5.1.2. Postorder Traversal

Example 5.5.2

The postorder enumeration for the tree of Figure 5.5.1isDBGEHIF C A.

= O & &

Postorder traversal begins.

static void postorder(BinNode rt) {
if (rt == null) return;
(SRR I > L DRpZNRFIEN S PR NN



postoraer(ru..Letcy));
postorder(rt.right());
visit(rt);

pok!

5.5.1.3. Inorder Traversal

An inorder traversal first visits the left child (including its entire subtree), then visits the node, and finally visits the
right child (including its entire subtree). The binary search tree makes use of this traversal to print all nodes in
ascending order of value.

Example 5.5.3

The inorder enumeration for the tree of Figure 5.5.1isBDAGECHF L

& © & &

Inorder traversal begins.

static void inorder(BinNode rt) {
if (rt == null) return;
inorder(rt.left());
visit(rt);
inorder(rt.right());

rt
%
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Now we will discuss some implementations for the traversals, but we need to define a node ADT to work with. Just
as a linked list is composed of a collection of link objects, a tree is composed of a collection of node objects. Here is
an ADT for binary tree nodes, called BinNode. This class will be used by some of the binary tree structures
presented later. Member functions are provided that set or return the element value, return a pointer to the left child,
return a pointer to the right child, or indicate whether the node is a leaf.

Java (Generic)

interface BinNode { // Binary tree node ADT
// Get and set the element value
public Object value();
public void setValue(Object v);

5.5.1.4. Implementation

// return the children
public BinNode left();
public BinNode right();

// return TRUE if a leaf node, FALSE otherwise
public boolean islLeaf();

A traversal routine is naturally written as a recursive function. Its input parameter is a pointer to a node which we will
call rt because each node can be viewed as the root of a some subtree. The initial call to the traversal function
passes in a pointer to the root node of the tree. The traversal function visits rt and its children (if any) in the desired
order. For example, a preorder traversal specifies that rt be visited before its children. This can easily be
implemented as follows.

Java (Generic)

static void preorder(BinNode rt) {
if (rt == null) return; // Empty subtree - do nothing
visit(rt); // Process root node
preorder(rt.left()); // Process all nodes in Lleft
preorder(rt.right()); // Process all nodes in right
}
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Function preorder first checks that the tree is not empty (if it is, then the traversal is done and preorder simply
returns). Otherwise, preorder makes a call to visit, which processes the root node (i.e., prints the value or
performs whatever computation as required by the application). Function preorder is then called recursively on the
left subtree, which will visit all nodes in that subtree. Finally, preorder is called on the right subtree, visiting all
nodes in the right subtree. Postorder and inorder traversals are similar. They simply change the order in which the
node and its children are visited, as appropriate.

(Reset Model Answer) O [

Instructions:

Reproduce the behavior of binary tree preorder traversal. Click nodes to indicate the order in which the
traversal algorithm would visit them.

static void preorder(BinNode rt) {
if (rt == null) return; // Empty subtree - do nothing
visit(rt); // Process root node
preorder(rt.left()); // Process all nodes in left
preorder(rt.right()); // Process all nodes in right

QA U1~ W N R

Score: 0/ 9, Points remaining: 9, Points lost: 0

5.5.2. Postorder Traversal Practice

(Reset Model Answer) O [

Instructions:

Reproduce the behavior of binary tree postorder traversal. Click nodes to indicate the order in which the
traversal algorithm would visit them.

1. static void postorder(BinNode rt) {
2. if (rt == null) return;
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postorder(rt.left());
postorder(rt.right());
visit(rt);

o U AW

}

Score: 0/ 9, Points remaining: 9, Points lost: 0

5.5.3. Inorder Traversal Practice

(Reset Model Answerj O E

Instructions:

Reproduce the behavior of binary tree inorder traversal. Click nodes to indicate the order in which the traver
algorithm would visit them.

1 static void inorder(BinNode rt) {
2 if (rt == null) return;

3 inorder(rt.left());

4. visit(rt);

5 inorder(rt.right());

6. }

Score: 0/ 9, Points remaining: 9, Points lost: 0
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5.5.4. Summary Questions
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05.06 Implementing Tree Traversals

5.6. Implementing Tree Traversals

5.6.1. Implementing Tree Traversals

Recall that any recursive function requires the following:
1. The base case and its action.
2. The recursive case and its action.

In this module, we will talk about some details related to correctly and clearly implementing recursive tree traversals.

5.6.1.1. Base Case

In binary tree traversals, most often the base case is to check if we have an empty tree. A common mistake is to
check the child pointers of the current node, and only make the recursive call for a non-null child.

Recall the basic preorder traversal function.

Java (Generic)

static void preorder(BinNode rt) {
if (rt == null) return; // Empty subtree - do nothing
visit(rt); // Process root node
preorder(rt.left()); // Process all nodes in Lleft
preorder(rt.right()); // Process all nodes in right

}

Here is an alternate design for the preorder traversal, in which the left and right pointers of the current node are
checked so that the recursive call is made only on non-empty children.

Java (Generic)
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// This is a bad idea

static void preorder2(BinNode rt) {
visit(rt);
if (rt.left() !'= null) preorder2(rt.left());
if (rt.right() !'= null) preorder2(rt.right());

}

At first it might appear that preorder2 is more efficient than preorder, because it makes only half as many
recursive calls (since it won’t try to call on a null pointer). On the other hand, preorder2 must access the left and
right child pointers twice as often. The net result is that there is no performance improvement.

Perhaps the writer of preorder2 wants to protect against the case where the root is null. But preorder2 has an
error. While preorder2 insures that no recursive calls will be made on empty subtrees, it will fail if the orignal call
from outside passes in a null pointer. This would occur if the original tree is empty. Since an empty tree is a
legitimate input to the initial call on the function, there is no safe way to avoid this case. So it is necessary that the
first thing you do on a binary tree traversal is to check that the root is not null. If we try to fix preorder2 by adding
this test, then making the tests on the children is completely redundant because the pointer will be checked again in
the recursive call.

The design of preorder2 is inferior to that of preorder for a deeper reason as well. Looking at the children to see if
they are null means that we are worrying too much about something that can be dealt with just as well by the
children. This makes the function more complex, which can become a real problem for more complex tree
structures. Even in the relatively simple preorder2 function, we had to write two tests for null rather than the one
needed by preorder. This makes it more complicated than the original version. The key issue is that it is much
easier to write a recursive function on a tree when we only think about the needs of the current node. Whenever we
can, we want to let the children take care of themselves. In this case, we care that the current node is not null, and
we care about how to invoke the recursion on the children, but we do not have to care about how or when that is
done.

5.6.1.2. The Recursive Call

The secret to success when writing a recursive function is to not worry about how the recursive call works. Just
accept that it will work correctly. One aspect of this principle is not to worry about checking your children when you
don’t need to. You should only look at the values of your children if you need to know those values in order to
compute some property of the current node. Child values should not be used to decide whether to call them
recursviely. Make the call, and let their own base case handle it.

Example 5.6.1

Consider the problem of incrementing the value for each node in a binary tree. The following solution has an
error, since it does redundant manipulation to left and the right children of each node.

static void ineff_BTinc(BinNode root) { 198



if (root != null) {

root.setValue((int)(root.value()) + 1);

if (root.left() != null) {
root.left().setValue((int)(root.left().value()) + 1);
ineff BTinc(root.left().left());

¥

if (root.right() != null) {
root.right().setValue((int)(root.right().value()) + 1);
ineff_BTinc(root.right().right());

}
}
}

The efficient solution should not explicitly set the children values that way. Changing the value of a node does not
depend on the child values. So the function should simply increment the root value, and make recursive calls on
the children.

In rare problems, you might need to explicitly check if the children are null or access the children values for each
node. For example, you might need to check if all nodes in a tree satisfy the property that each node stores the sum
of its left and right children. In this situation you must look at the values of the children to decide something about
the current node. You do not look at the children to decide whether to make a recursive call.

5.6.2. Binary Tree Increment By One Exercise

X295: Binary Tree Increment By One Exercise

Write a recursive function that increments by one the value for every node in the binary tree pointed at by
tree. Assume that nodes store integer values.
Here are methods that you can use on the BinNode objects:
interface BinNode {

public int value();

public void setValue(int v);

public BinNode left();

public BinNode right();

public boolean isLeaf();

}
Your Answer: Feedback
1 public BinNode BTinc(BinNode root) Your feedback will qj
2 { answer.
3
4}
5
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Check my answer! Reset
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05.07 Information Flow in Recursive Functions

5.7. Information Flow in Recursive Functions

5.7.1. Information Flow in Recursive Functions

Handling information flow in a recursive function can be a challenge. In any given function, we might need to be
concerned with either or both of:

1. Passing down the correct information needed by the function to do its work,
2. Returning (passing up) information to the recursive function’s caller.

Any given problems might need to do either or both. Here are some examples and exercises.

5.7.1.1. Local

Local traversal involves going to each node in the tree to do some operation. Such functions need no information
from the parent (other than a pointer to the current node), and pass no information back. Examples include preorder
traversal and incrementing the value of every node by one.

5.7.1.2. Passing Down Information

Slightly more complicated is the situation where every node needs the same piece of information to be passed to it.
An example would be incrementing the value for all nodes by some amount. In this case, the value parameter is
simply passed on unchanged in all recursive calls.

Many functions need information that changes from node to node. A simple example is a function to set the value for
each node of the tree to be its depth. In this case, the depth is passed as a parameter to the function, and each
recursive call must adjust that value (by adding one).

5.7.2. Binary Tree Set Depth Exercise

X281: Binary Tree Set Depth Exercise

Write a recursive function to set the value for each 2noo1de in a binary tree to be its depth then return the mo



integer values. On the initial call to BTsetdepth, depth isO.
Here are methods that you can use on the BinNode objects:
interface BinNode {

public int value();

public void setValue(int v);

public BinNode left();

public BinNode right();

public boolean isLeaf();

}
Your Answer: Feedback

1 public BinNode BTsetdepth(BinNode root, int depth) Your feedback will aj
2 {
3
4}
5

answer.

Check my answer! Reset

5.7.3. Collect-and-return

Collect-and-return requires that we communicate information back up the tree to the caller. Simple examples are to
count the number of nodes in a tree, or to sum the values of all the nodes.

Ewvanmanla E7 4 202



ERAIIPIE 9.71.1

Consider the problem of counting (and returning) the number of nodes in a binary tree. The key insight is that the
total count for any (non-empty) subtree is one for the root plus the counts for the left and right subtrees. Where do
left and right subtree counts come from? Calls to function count on the subtrees will compute this for us. Thus,
we can implement count as follows.

Java (Generic)

static int count(BinNode rt) {
if (rt == null) return ©@; // Nothing to count
return 1 + count(rt.left()) + count(rt.right());

}

The following solution is correct but inefficient as it does redundant checks on the left and the right child of each
visited node.

static int ineff_count(BinNode root) {
if (root == null) { return 9; } // Nothing to count
int count = ©;
if (root.left() != null) {
count = 1 + ineff_count(root.left());
}
if (root.right() !'= null) {
count = 1 + ineff_count(root.right());

}

if (root.left() == null && root.right() == null) {
return 1;

}

return 1 + count;

When you write a recursive function that returns a value, such as counting the number of nodes in the subtree, you
have to make sure that your function actually returns a value. A common mistake is to make a recursive call and not
capture the returned value. Another common mistake is to not return a value.

& © O &

When you write a recursive method that traverses a binary tree, you should avoid the following common mistal

static int bad_count(BinNode root) {

if (root == null) { return @; } // Nothing to count
.o .. 208 .-



bad_count(root.lett());
1 + bad_count(root.left()) + bad_count(root.right());
}

5.7.4. Binary Tree Check Sum Exercise

X286: Binary Tree Check Sum Exercise

Given a binary tree, check if the tree satisfies the property that for each node, the sum of the values of its L
the node’s value. If a node has only one child, then the node should have the same value as that child. Lea
property.
Here are methods that you can use on the BinNode objects:
interface BinNode {

public int value();

public void setValue(int v);

public BinNode left();

public BinNode right();

public boolean isLeaf();

}
Your Answer: Feedback
1 public boolean BTchecksum(BinNode root) Your feedback will a)
2 { answer.
3
4}
5
Check my answer! Reset
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5.7.5. Binary Tree Leaf Nodes Count Exercise

X287: Binary Tree Leaf Nodes Count Exercise

Write a recursive function int BTleaf(BinNode root) to count the number of leaf nodes in the binary tre

the isLeaf() method in the BinNode class to check if a node is a leaf. This is the definition of the BinNo

1 interface BinNode {

2 public int value();

3 public void setValue(int v);
4 public BinNode left();

5 public BinNode right();

6 public boolean isLeaf();

7

}

Complete the BTleaf function below.

Your Answer:

Feedback

1 public int BTleaf(BinNode root)
2 {

3

4}

5

Check my answer! Reset
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5.7.6. Binary Tree Sum Nodes Exercise

X283: Binary Tree Sum Nodes Exercise

Write a recursive function int BTsumall(BinNode root) that returns the sum of the values for all of the r

root . Here are methods that you can use on the BinNode objects:

1 interface BinNode {

2  public int value();

3  public void setValue(int v);
4  public BinNode left();

5 public BinNode right();

6 public boolean isLeaf();

7

}

Write the BTsumall function below:

Your Answer: Feedback

1 public int BTsumall(BinNode root) Your feedback will a)
2 { answer.

3
4}
5

Check my answer! Reset

206



5.7.7. Combining Information Flows

Many functions require both that information be passed in, and that information be passed back. Let’s start with a
relatively simple case. If we want to check if some node in the tree has a particular value, that value has to be
passed down, and the count has to be passed back up. The downward flow is simple, as the value being checked
for never changes. The information passed up has the simple collect-and-return style: Return True if and only if one
of the children returns True.

5.7.8. Binary Tree Check Value Exercise

X280: Binary Tree Check Value Exercise

Write a recursive function that returns true if there is a node in the given binary tree with the given value, :
tree is not a Binary Search Tree.
Here are methods that you can use on the BinNode objects:

1 interface BinNode {

2  public int value();

3  public void setValue(int v);
4  public BinNode left();

5 public BinNode right();

6 public boolean isLeaf();

7

}

Write the BTcheckval function below:

Your Answer: Feedback

1 public boolean BTcheckval(BinNode root, int value) Your feedback will qj
2 { answer.

3
4}
5

Check my answer! Reset
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5.7.9. Combination Problems

Slightly more complicated problems combine what we have seen so far. Information passing down the tree changes
from node to node. Data passed back up the tree uses the collect-and-return paradigm.

5.7.10. Binary Tree Height Exercise

X285: Binary Tree Height Exercise

The height of a binary tree is the length of the path to the deepest node. An empty tree has a height of 0, ¢
1, and so on. Write a recursive function to find the height of the binary tree pointed at by root .
Here are methods that you can use on the BinNode objects:
interface BinNode {

public int value();

public void setValue(int v);

public BinNode left();

public BinNode right();

public boolean isLeaf();

}
Your Answer: Feedback
1 public int BTheight(BinNode root) Your feedback will a)
2 { answer.
3
4}

5
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Check my answer! Reset

5.7.11. Binary Tree Get Difference Exercise

X290: Binary Tree Get Difference Exercise

Given a binary tree, write a recursive function to return the difference between the sum of all node values

values at even levels. Define the root node to be at level 1.
Here are methods that you can use on the BinNode objects:

interface BinNode {
public int value();
public void setValue(int v);
public BinNode left();
public BinNode right();
public boolean isLeaf();

}

Your Answer:

Feedback

1 public int BTgetdiff(BinNode root)
2 {

3

4}

5
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Lneck my answer! Reset

5.7.12. Binary Tree Has Path Sum Exercise

X282: Binary Tree Has Path Sum Exercise

We define a "root-to-node path" to be any sequence of nodes in a tree starting with the root and proceedin:
‘root-to-node path sum"” for that path is the sum of the values for all the nodes (including the root and the
an empty tree to contain no root-to-node paths (and so its sum is zero). Define a tree with one node (equiv:
a root-to-node path consisting of just the root (and so its sum is the value of the root). Given a binary tree :
tree has some root-to-node path such that adding up all the values along the path equals sum. Return fals
Here are methods that you can use on the BinNode objects:
interface BinNode {

public int value();

public void setValue(int v);

public BinNode left();

public BinNode right();

public boolean isLeaf();

}
Your Answer: Feedback
1 public boolean BTpathsum(BinNode root, int sum) Your feedback will aj
2 { answer.
3
4}

5
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Check my answer! Reset
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5.8. Binary Tree Node Implementations

5.8.1. Binary Tree Node Implementations

In this module we examine various ways to implement binary tree nodes. By definition, all binary tree nodes have
two children, though one or both children can be empty. Binary tree nodes typically contain a value field, with the
type of the field depending on the application. The most common node implementation includes a value field and
pointers to the two children.

Here is a simple implementation for the BinNode interface, which we will name BSTNode. Its element type is an
Object. When we need to support search structures such as the Binary Search Tree, the node will typically store a
key-value pair. Every BSTNode object also has two pointers, one to its left child and another to its right child.

Java

// Binary tree node implementation: supports comparable objects

class BSTNode<E extends Comparable<? super E>> implements BinNode<E> {
private E element; // Element for this node
private BSTNode<E> left; // Pointer to left child
private BSTNode<E> right; // Pointer to right child

// Constructors
BSTNode() { left = right = null; }
BSTNode(E val) { left = right = null; element = val; }
BSTNode(E val, BSTNode<E> 1, BSTNode<E> r)
{ left = 1; right = r; element = val; }

// Get and set the element value
public E value() { return element; }
public void setValue(E v) { element = v; }

// Get and set the left child
public BSTNode<E> left() { return left; }
public void setLeft(BSTNode<E> p) { left = p; }

// Get and set the right child
public BSTNode<E> right() { return right; }
public void setRight(BSTNode<E> p) { right = p; }

// return TRUE if a leaf node, FALSE otherwise
public boolean isLeaf() { return (left == null) && (right == null); }
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Figure 5.8.1: lllustration of a typical pointer-based binary tree implementation, where each node stores two child
pointers and a value.

Some programmers find it convenient to add a pointer to the node’s parent, allowing easy upward movement in the
tree. Using a parent pointer is somewhat analogous to adding a link to the previous node in a doubly linked list. In
practice, the parent pointer is almost always unnecessary and adds to the space overhead for the tree
implementation. It is not just a problem that parent pointers take space. More importantly, many uses of the parent
pointer are driven by improper understanding of recursion and so indicate poor programming. If you are inclined
toward using a parent pointer, consider if there is a more efficient implementation possible.

An important decision in the design of a pointer-based node implementation is whether the same class definition will
be used for leaves and internal nodes. Using the same class for both will simplify the implementation, but might be
an inefficient use of space. Some applications require data values only for the leaves. Other applications require
one type of value for the leaves and another for the internal nodes. Examples include the binary trie, the PR
Quadtree, the Huffman coding tree, and the expression tree illustrated by Figure 5.8.2. By definition, only internal
nodes have non-empty children. If we use the same node implementation for both internal and leaf nodes, then both
must store the child pointers. But it seems wasteful to store child pointers in the leaf nodes. Thus, there are many
reasons why it can save space to have separate implementations for internal and leaf nodes.
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Figure 5.8.2: An expression tree for 4z(2z + a) — c.

As an example of a tree that stores different information at the leaf and internal nodes, consider the expression tree
illustrated by Figure 5.8.2. The expression tree represents an algebraic expression composed of binary operators
such as addition, subtraction, multiplication, and division. Internal nodes store operators, while the leaves store
operands. The tree of Figure 5.8.2 represents the expression 4z(2z + a) — ¢. The storage requirements for a leaf in
an expression tree are quite different from those of an internal node. Internal nodes store one of a small set of
operators, so internal nodes could store a small code identifying the operator such as a single byte for the operator’s
character symbol. In contrast, leaves store variable names or numbers, which is considerably larger in order to
handle the wider range of possible values. At the same time, leaf nodes need not store child pointers.

Object-oriented languages allow us to differentiate leaf from internal nodes through the use of a class hierarchy.
A base class provides a general definition for an object, and a subclass modifies a base class to add more detail.
A base class can be declared for binary tree nodes in general, with subclasses defined for the internal and leaf
nodes. The base class in the following code is named VarBinNode. It includes a virtual member function named
isLeaf, which indicates the node type. Subclasses for the internal and leaf node types each implement isLeaf.
Internal nodes store child pointers of the base class type; they do not distinguish their children’s actual subclass.
Whenever a node is examined, its version of isLeaf indicates the node’s subclass.

// Base class for expression tree nodes
public interface VarBinNode {
public boolean islLeaf(); // AlLL subclasses must implement

}

/** Leaf node */
public class VarLeafNode implements VarBinNode {
private String operand; // Operand value

VarLeafNode(String val) { operand = val; }
public boolean isLeaf() { return true; }
public String value() { return operand; }

}

// Internal node
public class VarIntlNode implements VarBinNode {

private VarBinNode left; // Left child
private VarBinNode right; // Right child
private Character operator; // Operator value

VarIntlNode(Character op, VarBinNode 1, VarBinNode r)
{ operator = op; left = 1; right = r; }

public boolean isLeaf() { return false; }

public VarBinNode leftchild() { return left; }

public VarBinNode rightchild() { return right; }

public Character value() { return operator; }

}

// Preorder traversal
public static void traverse(VarBinNode rt) {
if (rt == null) { return; } // Notiphg to visit




if (rt.isLeaf()) { // Process leaf node
Visit.VisitlLeafNode(((VarLeafNode)rt).value());

}

else { // Process internal node
Visit.VisitInternalNode(((VarIntlNode)rt).value());
traverse(((VarIntlNode)rt).leftchild());
traverse(((VarIntlNode)rt).rightchild());

}
}

& © O &

Preorder traversal begins on pointer-based binary tree.

rt public static void traverse(VarBinNode rt) {
EL if (rt == null) { return; } // Nothing
if (rt.isLeaf()) { // Process
- Visit.VisitLeafNode(((VarLeafNode)rt).value(
}
else { // Process in
Visit.VisitInternalNode(((VarIntlNode)rt).va
traverse(((VarIntlNode)rt).leftchild());

©

+

/ traverse(((VarIntlNode)rt).rightchild());
OOHE }
ofo |

The Expression Tree implementation includes two subclasses derived from class VarBinNode, named LeafNode
and IntlNode. Class IntlNode can access its children through pointers of type VarBinNode. Function traverse
illustrates the use of these classes. When traverse calls method isLeaf, the language’s runtime environment
determines which subclass this particular instance of rt happens to be and calls that subclass’s version of isLeaf.
Method isLeaf then provides the actual node type to its caller. The other member functions for the derived
suibclasses are accessed bv tvne-castina the base class nointer as anoronriate. as shown in function traverse.
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5.9. Composite-based Expression Tree

5.9.1. Composite-based Expression Tree

There is another approach that we can take to represent separate leaf and internal nodes, also using a virtual base
class and separate node classes for the two types. This is to implement nodes using the Composite design
pattern. This approach is noticeably different from the procedural approach in that the node classes themselves
implement the functionality of traverse. Here is the implementation. Base class VarBinNode declares a member
function traverse that each subclass must implement. Each subclass then implements its own appropriate
behavior for its role in a traversal. The whole traversal process is called by invoking traverse on the root node,
which in turn invokes traverse on its children.

/** Base class: Composite */
public interface VarBinNode {
public boolean islLeaf();
public void traverse();

}

/** Leaf node: Composite */
public class VarLeafNode implements VarBinNode {
private String operand; // Operand value

VarLeafNode(String val) { operand = val; }
public boolean isLeaf() { return true; }
public String value() { return operand; }

public void traverse() {
Visit.VisitLeafNode(operand);

}
}

/** Internal node: Composite */
public class VarIntlNode implements VarBinNode { // Internal node

private VarBinNode left; // Left child
private VarBinNode right; // Right child
private Character operator; // Operator value

VarIntlNode(Character op,
VarBinNode 1, VarBinNode r)
{ operator = op; left = 1; right = r; }
public boolean isLeaf() { return false; }
public VarBinNode leftchild() { return left; }
public VarBinNode rightchild() { return right; }
public Character value() { return operator; }

public void traverse() {
Visit.VisitInternalNode(operator); 216




it (leftt != null) { lett.traverse(); }
if (right != null) { right.traverse(); }
}
}

/** Preorder traversal */

public static void traverse(VarBinNode rt) {
if (rt != null) { rt.traverse(); }

}

When comparing the composite implementation to the procedural approach, each has advantages and
disadvantages. The non-composite approach does not require that the node classes know about the traverse
function. With this approach, it is easy to add new methods to the tree class that do other traversals or other
operations on nodes of the tree. However, we see that traverse in the non-composite approach does need to be
familiar with each node subclass. Adding a new node subclass would therefore require modifications to the
traverse function. In contrast, the composite approach requires that any new operation on the tree that requires a
traversal also be implemented in the node subclasses. On the other hand, the composite approach avoids the need
for the traverse function to know anything about the distinct abilities of the node subclasses. Those subclasses
handle the responsibility of performing a traversal on themselves. A secondary benefit is that there is no need for
traverse to explicitly enumerate all of the different node subclasses, directing appropriate action for each. With
only two node classes this is a minor point. But if there were many such subclasses, this could become a bigger
problem. A disadvantage is that the traversal operation must not be called on a NULL pointer, because there is no
object to catch the call. This problem could be avoided by using a Flyweight to implement empty nodes. If the
composite implementation is for a full tree, then it is unnecesary to explicitly check if the children are null.

Typically, the non-composite version would be preferred in this example if traverse is a member function of the
tree class, and if the node subclasses are hidden from users of that tree class. On the other hand, if the nodes are
objects that have meaning to users of the tree separate from their existence as nodes in the tree, then the
composite version might be preferred because hiding the internal behavior of the nodes becomes more important.

Another advantage of the composite design is that implementing each node type’s functionality might be easier. This
is because you can focus solely on the information passing and other behavior needed by this node type to do its
job. This breaks down the complexity that many programmers feel overwhelmed by when dealing with complex
information flows related to recursive processing.
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05.10 Binary Tree Space Requirements

Due No Due Date Points 1 Submitting an external tool

05.10 Binary Tree Space Requirements

5.10. Binary Tree Space Requirements

5.10.1. Binary Tree Space Requirements

This module presents techniques for calculating the amount of overhead required by a binary tree, based on its
node implementation. Recall that overhead is the amount of space necessary to maintain the data structure. In other
words, it is any space not used to store data records. The amount of overhead depends on several factors including
which nodes store data values (all nodes, or just the leaves), whether the leaves store child pointers, and whether
the tree is a full binary tree.

In a simple pointer-based implementation for binary tree nodes, every node has two pointers to its children
(even when the children are NULL). This implementation requires total space amounting to n(2P + D) for a tree of n
nodes. Here, P stands for the amount of space required by a pointer, and D stands for the amount of space
required by a data value. The total overhead space will be 2Pn for the entire tree. Thus, the overhead fraction will be
2P /(2P + D). The actual value for this expression depends on the relative size of pointers versus data fields. If we
arbitrarily assume that P = D, then a binary tree has about two thirds of its total space taken up in overhead. Worse
yet, the Full Binary Tree Theorem tells us that about half of the pointers are “wasted” NULL values that serve only to
indicate tree structure, but which do not provide access to new data.

In many languages (such as Java or JavaScript), the most typical implementation is not to store any actual data in a
node, but rather a pointer to the data record. In this case, each node will typically store three pointers, all of which
are overhead, resulting in an overhead fraction of 3P/(3P + D).

If only leaves store data values, then the fraction of total space devoted to overhead depends on whether the tree is
full. If the tree is not full, then conceivably there might only be one leaf node at the end of a series of internal nodes.
Thus, the overhead can be an arbitrarily high percentage for non-full binary trees. The overhead fraction drops as
the tree becomes closer to full, being lowest when the tree is truly full. In this case, about one half of the nodes are
internal.

Great savings can be had by eliminating the pointers from leaf nodes in full binary trees. Again assume the tree
stores a pointer to the data field. Because about half of the nodes are leaves and half internal nodes, and because
only internal nodes now have child pointers, the overhead fraction in this case will be approximately

22P)  p
Z(2P)+Dn P+D
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If P =D, the overhead drops to about one half of the total space. However, if only leaf nodes store useful
information, the overhead fraction for this implementation is actually three quarters of the total space, because half
of the “data” space is unused.

If a full binary tree needs to store data only at the leaf nodes, a better implementation would have the internal nodes
store two pointers and no data field while the leaf nodes store only a pointer to the data field. This implementation
requires

n n

52P + E(P + D)
units of space. If P = D, then the overhead is 3P/(3P + D) = 3/4. It might seem counter-intuitive that the overhead
ratio has gone up while the total amount of space has gone down. The reason is because we have changed our

definition of “data” to refer only to what is stored in the leaf nodes, so while the overhead fraction is higher, it is from
a total storage requirement that is lower.

There is one serious flaw with this analysis. When using separate implementations for internal and leaf nodes, there
must be a way to distinguish between the node types. When separate node types are implemented via Java
subclasses, the runtime environment stores information with each object allowing it to determine, for example, the
correct subclass to use when the isLeaf virtual function is called. Thus, each node requires additional space. Only
one bit is truly necessary to distinguish the two possibilities. In rare applications where space is a critical resource,
implementors can often find a spare bit within the node’s value field in which to store the node type indicator. An
alternative is to use a spare bit within a node pointer to indicate node type. For example, this is often possible when
the compiler requires that structures and objects start on word boundaries, leaving the last bit of a pointer value
always zero. Thus, this bit can be used to store the node-type flag and is reset to zero before the pointer is
dereferenced. Another alternative when the leaf value field is smaller than a pointer is to replace the pointer to a leaf
with that leaf’s value. When space is limited, such techniques can make the difference between success and failure.
In any other situation, such “bit packing” tricks should be avoided because they are difficult to debug and
understand at best, and are often machine dependent at worst.
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05.11 Binary Search Trees

Due No Due Date Points 4 Submitting an external tool

05.11 Binary Search Trees

5.11. Binary Search Trees

5.11.1. Binary Search Tree Definition

A binary search tree (BST) is a binary tree that conforms to the following condition, known as the binary search
tree property. All nodes stored in the left subtree of a node whose key value is K have key values less than or
equal to K. All nodes stored in the right subtree of a node whose key value is K have key values greater than K.
Figure 5.11.1 shows two BSTs for a collection of values. One consequence of the binary search tree property is that
if the BST nodes are printed using an inorder traversal, then the resulting enumeration will be in sorted order from
lowest to highest.

(a) (b)

Figure 5.11.1: Two Binary Search Trees for a collection of values. Tree (a) results if values are inserted in the order
37,24,42,7, 2,40, 42, 32, 120. Tree (b) results if the same values are inserted in the order 120, 42, 42, 7, 2, 32,
37, 24, 40.

Here is a class declaration for the BST. Recall that there are various ways to deal with keys and comparing
records Three typical approaches are key-value p%‘? a special comparison method such as using the



Comparator class, and passing in a comparator function. Our BST implementation will require that records
implement the Comparable interface.

Java (Generic)

// Binary Search Tree implementation
class BST {
private BSTNode root; // Root of the BST
private int nodecount; // Number of nodes in the BST

// constructor
BST() { root = null; nodecount = 0; }

// Reinitialize tree
public void clear() { root = null; nodecount = 9; }

// Insert a record into the tree.
// Records can be anything, but they must be Comparable
// e: The record to insert.
public void insert(Comparable e) {
root = inserthelp(root, e);
nodecount++;

}

// Remove a record from the tree
// Rey: The key value of record to remove
// Returns the record removed, null if there 1is none.
public Comparable remove(Comparable key) {
Comparable temp = findhelp(root, key); // First find it
if (temp != null) {
root = removehelp(root, key); // Now remove it
nodecount--;

}

return temp;

}

// Return the record with key value kR, null if none exists
// Rey: The key value to find
public Comparable find(Comparable key) { return findhelp(root, key); }

// Return the number of records in the dictionary
public int size() { return nodecount; }

5.11.1.1. BST Search

The first operation that we will look at in detail will find the record that matches a given key. Notice that in the BST
class, public member function find calls private member function findhelp. Method find takes the search key as
an explicit parameter and its BST as an implicit parameter, and returns the record that matches the key. However,
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and the search key. Member findhelp has the desired form for this recursive subroutine and is implemented as
follows.

& © & &

Consider searching for the record with key value 32 in this tree. We call the findhelp method with a pointer 1
root (the node with key value 37).

private Comparable findhelp(BSTNode rt, Comparable
if (rt == null) return null;
if (rt.value().compareTo(key) > @)
return findhelp(rt.left(), key);
else if (rt.value().compareTo(key) == 0)
return rt.value();
else return findhelp(rt.right(), key);

(Undo Reset | Model Answer ] Gradej

Instructions:

Use the BST search algorithm to find the key given in the exercise. Starting with the root, click on an empty
reveal its value and its children. Work your way down the tree as the search algorithm would.

private Comparable findhelp(BSTNode rt, Comparable key) {
if (rt == null) return null;
if (rt.value().compareTo(key) > 0)
return findhelp(rt.left(), key);
else if (rt.value().compareTo(key) == 0)
return rt.value();
else return findhelp(rt.right(), key);
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5.11.2. BST Insert

Now we look at how to insert a new node into the BST.

& © & &

Consider inserting a record with key value 30 in this tree. We call the findhelp method with a pointer to the BS
node with value 37).

private BSTNode inserthelp(BSTNode rt, Comparable e) {
if (rt == null) return new BSTNode(e);
if (rt.value().compareTo(e) >= 0)
rt.setLeft(inserthelp(rt.left(), e));
else
rt.setRight(inserthelp(rt.right(), e));
return rt;

rt

[El
(&)

(24) (42)
OO NNOIO
OO

Note that, except for the last node in the path, inserthelp will not actually change the child pointer for any of the
nodes that are visited. In that sense, many of the aﬁgnments seem redundant. However, the cost of these



additional assignments is worth paying to keep the insertion process simple. The alternative is to check if a given
assignment is necessary, which is probably more expensive than the assignment!

We have to decide what to do when the node that we want to insert has a key value equal to the key of some node
already in the tree. If during insert we find a node that duplicates the key value to be inserted, then we have two
options. If the application does not allow nodes with equal keys, then this insertion should be treated as an error (or
ignored). If duplicate keys are allowed, our convention will be to insert the duplicate in the left subtree.

The shape of a BST depends on the order in which elements are inserted. A new element is added to the BST as a
new leaf node, potentially increasing the depth of the tree. Figure 5.11.1 illustrates two BSTs for a collection of
values. It is possible for the BST containing n nodes to be a chain of nodes with height ». This would happen if, for
example, all elements were inserted in sorted order. In general, it is preferable for a BST to be as shallow as
possible. This keeps the average cost of a BST operation low.

[Undo Reset | Model Answer ] Grade]

Instructions:

Use the BST Insert algorithm to insert values as they are shown at the top. Click on any empty node in the t
place the value to be inserted there. Remember that equal values go to the left.

7y
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5.11.3. BST Remove

Removing a node from a BST is a bit trickier than inserting a node, but it is not complicated if all of the possible
cases are considered individually. Before tackling the general node removal process, we will first see how to remove
from a given subtree the node with the largest key value. This routine will be used later by the general node removal
function.

1/6
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To remove the node with the maximum key value from a subtree, first find that node by starting at the subtre
continuously move down the right link until there is no further right link to follow.

rt
// Delete the maximum valued element in a subtree

private BSTNode deletemax(BSTNode rt) {

@ if (rt.right() == null) return rt.left();
rt.setRight(deletemax(rt.right()));

e @ return rt;
¥

The return value of the deletemax method is the subtree of the current node with the maximum-valued node in the
subtree removed. Similar to the inserthelp method, each node on the path back to the root has its right child
pointer reassigned to the subtree resulting from its call to the deletemax method.

A useful companion method is getmax which returns a pointer to the node containing the maximum value in the
subtree.

Java (Generic)

| S

// Get the maximum valued element in a subtree
private BSTNode getmax(BSTNode rt) {

if (rt.right() == null) return rt;

return getmax(rt.right());
}
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we first find R and then remove it from the tree. So, the first part of the remove operation is a search to find R. Once
R is found, there are several possibilities. If R has no children, then R’s parent has its pointer set to NULL. If R has
one child, then R’s parent has its pointer set to R’s child (similar to deletemax). The problem comes if R has two
children. One simple approach, though expensive, is to set R’s parent to point to one of R’s subtrees, and then
reinsert the remaining subtree’s nodes one at a time. A better alternative is to find a value in one of the subtrees that
can replace the value in R.

Thus, the question becomes: Which value can substitute for the one being removed? It cannot be any arbitrary
value, because we must preserve the BST property without making major changes to the structure of the tree.
Which value is most like the one being removed? The answer is the least key value greater than the one being
removed, or else the greatest key value less than (or equal to) the one being removed. If either of these values
replace the one being removed, then the BST property is maintained.

& © & &

Let's look a few examples for removehelp. We will start with an easy case. Let's see what happens when we
from this tree.

private BSTNode removehelp(BSTNode rt, Comparable key) {
if (rt == null) return null;
if (rt.value().compareTo(key) > ©0)
rt.setLeft(removehelp(rt.left(), key));
else if (rt.value().compareTo(key) < 9)
rt.setRight(removehelp(rt.right(), key));
else { // Found it
if (rt.left() == null) return rt.right();
else if (rt.right() == null) return rt.left();
else { // Two children
BSTNode temp = getmax(rt.left());
rt.setValue(temp.value());
rt.setLeft(deletemax(rt.left()));

}

return rt;




When duplicate node values do not appear in the tree, it makes no difference whether the replacement is the
greatest value from the left subtree or the least value from the right subtree. If duplicates are stored in the left
subtree, then we must select the replacement from the /eft subtree. 1 To see why, call the least value in the right
subtree L. If multiple nodes in the right subtree have value L, selecting L as the replacement value for the root of
the subtree will result in a tree with equal values to the right of the node now containing L. Selecting the greatest
value from the left subtree does not have a similar problem, because it does not violate the Binary Search Tree
Property if equal values appear in the left subtree.

1

Alternatively, if we prefer to store duplicate values in the right subtree, then we must replace a deleted node
with the least value from its right subtree.

[Reset Model Answer) Q

Instructions:

Use the BST Remove algorithm to remove values as they are shown at the top. Click on any node in
the tree to erase its value. If necessary, you can click on another node in the tree to move that value to
a node whose value you previously erased. Remember that equal values go to the left, so when
necessary we will replace a node with the greatest value on its left side.

Score: 0/ 8, Points remaining: 8, Points lost: 0
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5.11.4. BST Analysis

The cost for findhelp and inserthelp is the depth of the node found or inserted. The cost for removehelp is the
depth of the node being removed, or in the case when this node has two children, the depth of the node with
smallest value in its right subtree. Thus, in the worst case, the cost for any one of these operations is the depth of
the deepest node in the tree. This is why it is desirable to keep BSTs balanced, that is, with least possible height. If
a binary tree is balanced, then the height for a tree of n nodes is approximately logn. However, if the tree is
completely unbalanced, for example in the shape of a linked list, then the height for a tree with n nodes can be as
great as n. Thus, a balanced BST will in the average case have operations costing O(logn), while a badly
unbalanced BST can have operations in the worst case costing ©(n). Consider the situation where we construct a
BST of n nodes by inserting records one at a time. If we are fortunate to have them arrive in an order that results in
a balanced tree (a “random” order is likely to be good enough for this purpose), then each insertion will cost on
average O(logn), for a total cost of ©(nlogn). However, if the records are inserted in order of increasing value, then
the resulting tree will be a chain of height n. The cost of insertion in this case will be 3" | i = ©(n?).

Traversing a BST costs ©(n) regardless of the shape of the tree. Each node is visited exactly once, and each child
pointer is followed exactly once.

Below is an example traversal, named printhelp. It performs an inorder traversal on the BST to print the node
values in ascending order.

Java (Generic)

private void printhelp(BSTNode rt) {
if (rt == null) return;
printhelp(rt.left());
printVisit(rt.value());
printhelp(rt.right());

}

While the BST is simple to implement and efficient when the tree is balanced, the possibility of its being unbalanced
is a serious liability. There are techniques for organizing a BST to guarantee good performance. Two examples are
the AVL tree and the splay tree. There also exist otgggr types of search trees that are guaranteed to remain



balanced, such as the 2-3 Tree.
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5.12. Dictionary Implementation Using a BST

A simple implementation for the Dictionary ADT can be based on sorted or unsorted lists. When implementing
the dictionary with an unsorted list, inserting a new record into the dictionary can be performed quickly by putting it
at the end of the list. However, searching an unsorted list for a particular record requires ©(n) time in the average
case. For a large database, this is probably much too slow. Alternatively, the records can be stored in a sorted list. If
the list is implemented using a linked list, then no speedup to the search operation will result from storing the
records in sorted order. On the other hand, if we use a sorted array-based list to implement the dictionary, then
binary search can be used to find a record in only ©(logn) time. However, insertion will now require ©(n) time on
average because, once the proper location for the new record in the sorted list has been found, many records might
be shifted to make room for the new record.

Is there some way to organize a collection of records so that inserting records and searching for records can both
be done quickly? We can do this with a binary search tree (BST). The advantage of using the BST is that all major
operations (insert, search, and remove) are ©(logn) in the average case. Of course, if the tree is badly balanced,
then the cost can be as bad as ©(n).

Here is an implementation for the Dictionary interface, using a BST to store the records.

// Dictionary implementation using BST
// This uses KVPair to manage the key/value pairs
public class BSTDict implements Dictionary {

private BST theBST; // The BST that stores the records

// constructor
BSTDict() { theBST = new BST(); }

// Reinitialize dictionary
public void clear() { theBST = new BST(); }

// Insert a record

// R: the key for the record being inserted.

// e: the record being inserted.

public void insert(Comparable k, Object e) {
theBST.insert(new KVPair(k, e));

}

// Remove and return a record.
// kR: the key of the record to be removed.
// Return a maching record. If multiple records match "R", remove
// an arbitrary one. Return null if no record with key "R" exists.
public Object remove(Comparable k) {

Object temp = theBST.remove(k);

if (temp == null) { return temp; }

else { return ((KVPair)temp).value(); }
}




// Kemove ana return dn drpltTrary recora jrom dictionary.

// Return the record removed, or null if none exists.

public Object removeAny() {
if (theBST.size() == @) { return null; }
Object temp = theBST.remove(((KVPair)(theBST.root().value())).key());
return ((KVPair)temp).value();

}

// Return a record matching "R" (null if none exists).
// If multiple records match, return an arbitrary one.
// k: the key of the record to find
public Object find(Comparable k) {

Object temp = theBST.find(k);

if (temp == null) { return temp; }

else { return ((KVPair)temp).value() };
}

// Return the number of records in the dictionary.
public int size() {
return theBST.size();
}
}
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05.13 Binary Tree Guided Information Flow

Due No Due Date Points 2 Submitting an external tool

05.13 Binary Tree Guided Information Flow

5.13. Binary Tree Guided Information Flow

5.13.1. Binary Tree Guided Information Flow

When writing a recursive method to solve a problem that requires traversing a binary tree, we want to make sure
that we are visiting the required nodes (no more and no less).

So far, we have seen several tree traversals that visited every node of the tree. We also saw the BST search, insert,
and remove routines, that each go down a single path of the tree. Guided traversal refers to a problem that does
not require visiting every node in the tree, though it typically requires looking at more than one path through the tree.
This means that the recursive function is making some decision at each node that sometimes lets it avoid visiting
one or both of its children. The decision is typically based on the value of the current node. Many problems that
require information flow on binary search trees are “guided” in this way.

Example 5.13.1

An extreme example is finding the minimum value in a BST. A bad solution to this problem would visit every node
of the tree. However, we can take advantage of the BST property to avoid visiting most nods in the tree. You
know that the values greater than the root are always in the right subtree, and those values less than the root are
in the left subtree. Thus, at each node we need only visit the left subtree until we reach a leaf node.

Here is a problem that typically needs to visit more than just a single path, but not all of the nodes.

& © & &

Suppose that you want to write a recursive function named range that, given a root to a BST, a key value min,
value max, returns the number of nodes having key values that fall between min and max. Function range sho
few nodes in the BST as possible. An inefficient solution is shown.

int range(BSTNode root , int min , int max) {
if(root == null)
ratiirn O« 233
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int result = 0;

if ((min <= (Integer)root.element()) && (max >= (Integer)root.element()))
result = result + 1;

result += range(root.left(), min, max);

result += range(root.right(), min, max);

return result;

5.13.2. Binary Search Tree Small Count Exercise

X2'79: Binary Search Tree Small Count Exercise

Write a recursive function BSTsmallcount that, given a BST and a value key, returns the number of node:
function should visit as few nodes in the BST as possible.
Here are methods that you can use on the BinNode objects:

1 interface BinNode {

2 public int value();

3 public void setValue(int v);
4 public BinNode left();

5 public BinNode right();

6 public boolean islLeaf();

7

¥
Your Answer: Feedback
1 public int BSTsmallcount(BinNode root, int key) Your feedback will a
2 { answer.
3
4}
5
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Check my answer! Reset
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05.14 Multiple Binary Trees

Due No Due Date

Points 6

05.14 Multiple Binary Trees

Submitting an external tool

5.14. Multiple Binary Trees

5.14.1. Mirror Image Binary Trees Exercise

X288: Mirror Image Binary Trees Exercise

Given two binary trees, return true if and only if they are mirror images of each other. Note that two empty

Here are methods that you can use on the BinNode objects:

interface BinNode {
public int value();

public void setValue(int v);
public BinNode left();
public BinNode right();
public boolean isLeaf();

}

Your Answer:

Feedback

2 {
3
4}
5

1 public boolean MBTmirror(BinNode rootl, BinNode root2)

Check my answer!

Reset
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5.14.2. Same Binary Tree Exercise

X284: Same Binary Tree Exercise

Given two binary trees, return true if they are identical (they have nodes with the same values, arranged in
Here are methods that you can use on the BinNode objects:
interface BinNode {
public int value();
public void setValue(int v);
public BinNode left();
public BinNode right();
public boolean isLeaf();

}
Your Answer: Feedback
1 public boolean MBTsame(BinNode rootl, BinNode root2) Your feedback will qj
2 { answer.
3
4}
5
Check my answer! Reset
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5.14.3. Structurally Identical Binary Trees Exercise

X289: Structurally Identical Binary Trees Exercis

Given two binary trees, return true if and only if they are structurally identical (they have the same shape, t
values).
Here are methods that you can use on the BinNode objects:
interface BinNode {

public int value();

public void setValue(int v);

public BinNode left();

public BinNode right();

public boolean isLeaf();

}
Your Answer: Feedback
1 public boolean MBTstructure(BinNode rootl, BinNode root2) Your feedback will aj
2 { answer.
3
4}
5
Check my answer! Reset
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5.15. A Hard Information Flow Problem

Sometimes, passing the right information up and down the tree to control a recursive function gets complicated. The
information flow itself is simple enough, but deciding what to pass might be tricky.

A more difficult example is illustrated by the following problem. Given an arbitrary binary tree we wish to determine
if, for every node A, are all nodes in A’s left subtree less than the value of A, and are all nodes in A’s right subtree
greater than the value of A? (This happens to be the definition for a binary search tree.) Unfortunately, to make this
decision we need to know some context that is not available just by looking at the node’s parent or children.

®
Q
@ ()

Figure 5.15.1: To be a binary search tree, the left child of the node with value 40 must have a value between 20 and
40.

As shown by Figure 5.15.1, it is not enough to verify that A’s left child has a value less than that of 4, and that A’s
right child has a greater value. Nor is it enough to verify that A has a value consistent with that of its parent. In fact,
we need to know information about what range of values is legal for a given node. That information might come from
any of the node’s ancestors. Thus, relevant range information must be passed down the tree. We can implement
this function as follows.

Java (Generic)

static boolean checkBST(BSTNode rt, Comparable low, Comparable high) {

if (rt == null) return true; // Empty subtree

Comparable rootval = rt.value();

if ((rootval.compareTo(low) <= @) || (rootval.compareTo(high) > @))
return false; // Out of range

if (!checkBST(rt.left(), low, rootval))
return false; // Left side failed

return checkBST(rt.right(), rootval, high);
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05.16 Array Implementation for Complete Binary Trees

Due No Due Date Points 1 Submitting an external tool

05.16 Array Implementation for Complete Binary Trees

5.16. Array Implementation for Complete Binary
Trees

5.16.1. Array Implementation for Complete Binary Trees

From the full binary tree theorem, we know that a large fraction of the space in a typical binary tree node
implementation is devoted to structural overhead, not to storing data. This module presents a simple, compact
implementation for complete binary trees. Recall that complete binary trees have all levels except the bottom filled
out completely, and the bottom level has all of its nodes filled in from left to right. Thus, a complete binary tree of n
nodes has only one possible shape. You might think that a complete binary tree is such an unusual occurrence that
there is no reason to develop a special implementation for it. However, the complete binary tree has practical uses,
the most important being the heap data structure. Heaps are often used to implement priority queues and for
external sorting algorithms.

We begin by assigning numbers to the node positions in the complete binary tree, level by level, from left to right as
shown in Figure 5.16.1. An array can store the tree’s data values efficiently, placing each data value in the array
position corresponding to that node’s position within the tree. The table lists the array indices for the children,
parent, and siblings of each node in Figure 5.16.1.

Figure 5.16.1: A complete binary tree of 12 nodes, numbered starting from 0.

Here is a table that lists, for each node position, the positions of the parent, sibling, and children of the node.
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Position 0 1 2 3 4 8 9 10 11
Parent —— 0 0 1 1 3 3 4 4 5
Left Child 1 3 5 7 9 11 R (U I (U [
Right Child 2 4 6 8 10 | —— | —— | === | = | ==
Left Sibling | — — | — — 1 - = 3 - = 5 - = 7 | - 9 - —
Right Sibling | — — 2 - — 4 - — 6 - — 8 - — 10 | —— | ——

Looking at the table, you should see a pattern regarding the positions of a node’s relatives within the array. Simple
formulas can be derived for calculating the array index for each relative of a node R from R’s index. No explicit
pointers are necessary to reach a node’s left or right child. This means there is no overhead to the array

implementation if the array is selected to be of size n for a tree of n nodes.

The formulae for calculating the array indices of the various relatives of a node are as follows. The total number of

nodes in the tree is n. The index of the node in question is », which must fall in the range 0 to n — 1.
Parent(r) = [(r — 1)/2] if » # 0.
Left child(r) =2r +1if2r+1 < n.
Right child(r) = 2r + 2if 2r + 2 < n.
Left sibling(r) = r — 1 if r is even and r # 0.

Right sibling(r) = r + 1 if risodd and » + 1 < n.

Khan.randRange(0, 11) ["parent”, "left child", "right child", "left sibling", "right sibling"] Khan.randRange(0),
4) completeFIB.genAnswer(node, randrel)

WARNING! Read the conditions for the problems in this set very carefully! The type of relation and node can
change from problem to problem.

For a complete binary tree with nodes labeled as in the figure above, what is the relation/randrel] of the node
labeled node? Type in the node number of the relation/randrel], or if one does not exist, then type NONE.

ANS

To find the parent of node R, calculate \1floor (R - 1)/2 \rfloor.IfR = @, then it has no parent.
To find the left child of node R, calculate 2R + 1. If 2R + 1 \geq N, then R has no left child.

To find the right child of node R, calculate 2R + 2. If 2R + 2 \geq N, then R has no right child.

To find the left sibling of node R, calculate R - 1 if R is even and not 0. If R is odd or is 0, then it has no left
sibling.

To find the right sibling of node R, calculate R + 1 ifRis odd, and R + 1 < N. If these conditions are not met,
then R has no right sibling.
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05.17 Heaps and Priority Queues

Due No Due Date Points 4 Submitting an external tool

05.17 Heaps and Priority Queues

5.17. Heaps and Priority Queues

5.17.1. Heaps and Priority Queues

There are many situations, both in real life and in computing applications, where we wish to choose the next “most
important” from a collection of people, tasks, or objects. For example, doctors in a hospital emergency room often
choose to see next the “most critical” patient rather than the one who arrived first. When scheduling programs for
execution in a multitasking operating system, at any given moment there might be several programs (usually called
jobs) ready to run. The next job selected is the one with the highest priority. Priority is indicated by a particular
value associated with the job (and might change while the job remains in the wait list).

When a collection of objects is organized by importance or priority, we call this a priority queue. A normal queue
data structure will not implement a priority queue efficiently because search for the element with highest priority will
take ©(n) time. A list, whether sorted or not, will also require ©(n) time for either insertion or removal. A BST that
organizes records by priority could be used, with the total of n inserts and n remove operations requiring ©(nlogn)
time in the average case. However, there is always the possibility that the BST will become unbalanced, leading to
bad performance. Instead, we would like to find a data structure that is guaranteed to have good performance for
this special application.

This section presents the heap 1 data structure. A heap is defined by two properties. First, it is a complete binary
tree, so heaps are nearly always implemented using the array representation for complete binary trees. Second,
the values stored in a heap are partially ordered. This means that there is a relationship between the value stored
at any node and the values of its children. There are two variants of the heap, depending on the definition of this
relationship.

1

Note that the term “heap” is also sometimes used to refer to free store.

A max heap has the property that every node stores a value that is greater than or equal to the value of either of its
children. Because the root has a value greater than or equal to its children, which in turn have values greater than or
equal to their children, the root stores the maximum of all values in the tree.

A min heap has the property that every node stores a value that is less than or equal to that of its children. Because
the root has a value less than or equal to its children, which in turn have values less than or equal to their children,
the root stores the minimum of all values in the tree.
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Note that there is no necessary relationship between the value of a node and that of its sibling in either the min heap
or the max heap. For example, it is possible that the values for all nodes in the left subtree of the root are greater
than the values for every node of the right subtree. We can contrast BSTs and heaps by the strength of their
ordering relationships. A BST defines a total order on its nodes in that, given the positions for any two nodes in the
tree, the one to the “left” (equivalently, the one appearing earlier in an inorder traversal) has a smaller key value
than the one to the “right”. In contrast, a heap implements a partial order. Given their positions, we can determine
the relative order for the key values of two nodes in the heap only if one is a descendant of the other.

Min heaps and max heaps both have their uses. For example, the Heapsort uses the max heap, while the
Replacement Selection algorithm used for external sorting uses a min heap. The examples in the rest of this section
will use a max heap.

Be sure not to confuse the logical representation of a heap with its physical implementation by means of the array-
based complete binary tree. The two are not synonymous because the logical view of the heap is actually a tree
structure, while the typical physical implementation uses an array.

Here is an implementation for max heaps. The class uses records that support the Comparable interface to provide
flexibility.

// Max-heap implementation

class MaxHeap {
private Comparable[] Heap; // Pointer to the heap array
private int size; // Maximum size of the heap
private int n; // Number of things now in heap

// Constructor supporting preloading of heap contents
MaxHeap(Comparable[] h, int num, int max)
{ Heap = h; n = num; size = max; buildheap(); }

// Return current size of the heap
int heapsize() { return n; }

// Return true if pos a leaf position, false otherwise
boolean isLeaf(int pos)
{ return (pos >= n/2) && (pos < n); }

// Return position for left child of pos
int leftchild(int pos) {

if (pos >= n/2) { return -1; }

return 2*pos + 1;

}

// Return position for right child of pos
int rightchild(int pos) {
if (pos >= (n-1)/2) { return -1; }
return 2*pos + 2;

}

// Return position for parent
int parent(int pos) { 246




if (pos <= 0) { return -1; }
return (pos-1)/2;
}

// Insert val 1into heap
void insert(int key) {
if (n >= size) {
System.out.println("Heap is full");
return;
}
int curr = n++;
Heap[curr] = key; // Start at end of heap
// Now sift up until curr's parent's key > curr's Rey
while ((curr != @) && (Heap[curr].compareTo(Heap[parent(curr)]) > 0)) {
Swap.swap(Heap, curr, parent(curr));
curr = parent(curr);

}
}

// Heapify contents of Heap
void buildheap()
{ for (int i=n/2-1; i»=0; i--) { siftdown(i); } }

// Put element in 1its correct place
void siftdown(int pos) {
if ((pos < @) || (pos >= n)) { return; } // Illegal position
while (!isLeaf(pos)) {
int j = leftchild(pos);
if ((j<(n-1)) && (Heap[j].compareTo(Heap[j+1]) < 0)) {
j++; // j 1s now index of child with greater value
}
if (Heap[pos].compareTo(Heap[j]) >= @) { return; }
Swap.swap(Heap, pos, j);
pos = j; // Move down
}
}

// Remove and return maximum value

Comparable removemax() {
if (n == 0) { return -1; } // Removing from empty heap
Swap.swap(Heap, @, --n); // Swap maximum with Last value
siftdown(@); // Put new heap root val in correct place
return Heap[n];

}

// Remove and return element at specified position
Comparable remove(int pos) {
if ((pos < @) || (pos >= n)) { return -1; } // Illegal heap position
if (pos == (n-1)) { n--; } // Last element, no work to be done
else {
Swap.swap(Heap, pos, --n); // Swap with Llast value
update(pos);
}

return Heap[n];
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// Modify the value at the given position

void modify(int pos, Comparable newVal) {
if ((pos < @) || (pos >= n)) { return; } // Illegal heap position
Heap[pos] = newVal;
update(pos);

}

// The value at pos has been changed, restore the heap property
void update(int pos) {
// If it is a big value, push it up
while ((pos > ©) && (Heap[pos].compareTo(Heap[parent(pos)]) > 0)) {
Swap.swap(Heap, pos, parent(pos));
pos = parent(pos);
}
siftdown(pos); // If it is Llittle, push down
}
}

This class definition makes two concessions to the fact that an array-based implementation is used. First, heap
nodes are indicated by their logical position within the heap rather than by a pointer to the node. In practice, the
logical heap position corresponds to the identically numbered physical position in the array. Second, the constructor
takes as input a pointer to the array to be used. This approach provides the greatest flexibility for using the heap
because all data values can be loaded into the array directly by the client. The advantage of this comes during the
heap construction phase, as explained below. The constructor also takes an integer parameter indicating the initial
size of the heap (based on the number of elements initially loaded into the array) and a second integer parameter
indicating the maximum size allowed for the heap (the size of the array).

Method heapsize returns the current size of the heap. H.isLeaf(pos) returns TRUE if position pos is a leaf in
heap H, and FALSE otherwise. Members leftchild, rightchild, and parent return the position (actually, the
array index) for the left child, right child, and parent of the position passed, respectively.

One way to build a heap is to insert the elements one at a time. Method insert will insert a new element V into the
heap.

= © 0 &

Here is the process for inserting a new record into a heap.

[88 85|83 72|73 |42|57| 6 | 48] 60 ]
0 1 2 3 4 5 6 7 8 9 10
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You might expect the heap insertion process to be similar to the insert function for a BST, starting at the root and
working down through the heap. However, this approach is not likely to work because the heap must maintain the
shape of a complete binary tree. Equivalently, if the heap takes up the first n positions of its array prior to the call to
insert, it must take up the first n + 1 positions after. To accomplish this, insert first places V at position n of the
array. Of course, V is unlikely to be in the correct position. To move V to the right place, it is compared to its
parent’s value. If the value of V is less than or equal to the value of its parent, then it is in the correct place and the
insert routine is finished. If the value of V is greater than that of its parent, then the two elements swap positions.
From here, the process of comparing V to its (current) parent continues until V' reaches its correct position.

Since the heap is a complete binary tree, its height is guaranteed to be the minimum possible. In particular, a heap
containing n nodes will have a height of ©(logn). Intuitively, we can see that this must be true because each level
that we add will slightly more than double the number of nodes in the tree (the ; th level has 2¢ nodes, and the sum
of the first ; levels is 2i+1 — 1). Starting at 1, we can double only logn times to reach a value of n. To be precise, the
height of a heap with n nodes is [logn + 1].

Each call to insert takes ©(logn) time in the worst case, because the value being inserted can move at most the
distance from the bottom of the tree to the top of the tree. Thus, to insert n values into the heap, if we insert them
one at a time, will take ©(nlogn) time in the worst case.

( Reset | Model Answerj

Instructions:

Insert the stream of keys shown in the upper-left corner into an originally empty min heap. The heap is disp!
both its logical tree and physical array forms. Clicking on an element in one will also update the other. You c
a key by clicking an empty tree node or array cell. Once you insert a new key, be sure to update the key to r
min heap property as necessary. You can swap two records in the heap by first clicking one, then the other.
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Score: 0/ 21, Points remaining: 21, Points lost: 0

=y |

o 1 2 3 4 5 6 7 8 9

Insert values

5.17.2. Building a Heap

If all n values are available at the beginning of the building process, we can build the heap faster than just inserting
the values into the heap one by one. Consider this example, with two possible ways to heapify an initial set of
values in an array.

= © O &

Two series of exchanges to build a max heap:
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Figure 5.17.1: Two series of exchanges to build a max heap. (a) This heap is built by a series of nine exchanges in
the order (4-2), (4-1), (2-1), (5-2), (5-4), (6-3), (6-5), (7-5), (7-6). (b) This heap is built by a series of four exchanges
in the order (5-2), (7-3), (7-1), (6-1).

From this example, it is clear that the heap for any given set of numbers is not unique, and we see that some
rearrangements of the input values require fewer exchanges than others to build the heap. So, how do we pick the
best rearrangement?

One good algorithm stems from induction. Suppose that the left and right subtrees of the root are already heaps,
and R is the name of the element at the root. This situation is illustrated by this figure:

(%)
AN [\

Figure 5.17.2: Final stage in the heap-building algorithm. Both subtrees of node R are heaps. All that remains is to
push R down to its proper level in the heap.

In this case there are two possibilities.
1. R has a value greater than or equal to its two children. In this case, construction is complete.
2. R has a value less than one or both of its children.

R should be exchanged with the child that has greater value. The result will be a heap, except that R might still be
less than one or both of its (new) children. In this case, we simply continue the process of “pushing down” R until it
reaches a level where it is greater than its children, or is a leaf node. This process is implemented by the private
method siftdown.

This approach assumes that the subtrees are already heaps, suggesting that a complete algorithm can be obtained
by visiting the nodes in some order such that the children of a node are visited before the node itself. One simple
way to do this is simply to work from the high index of the array to the low index. Actually, the build process need not
visit the leaf nodes (they can never move down because they are already at the bottom), so the building algorithm
can start in the middle of the array, with the first internal node.

Here is a visualization of the heap build process.

1/10
< < > >
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Let's look at an efficient way to build the heap. We are going to make a max-heap from a set of input values.

Method buildHeap implements the building algorithm.

( Reset | Model Answerj

Instructions:

Your task is to reproduce the behavior of the buildheap algorithm to create a min heap from the data initially
array. The heap is displayed in both its logical tree and physical array forms. Clicking on an element in one \
update the other. You can swap two records in the heap by first clicking one, then the other.
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Score: 0/ 6, Points remaining: 6, Points lost: 0

@18 68 |83|63|41|43|65|99 45]
o 1 2 3 4 5 6 7 8 9

©
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What is the cost of buildHeap? Clearly it is the sum of the costs for the calls to siftdown. Each siftdown
operation can cost at most the number of levels it takes for the node being sifted to reach the bottom of the tree. In
any complete tree, approximately half of the nodes are leaves and so cannot be moved downward at all. One
quarter of the nodes are one level above the leaves, and so their elements can move down at most one level. At
each step up the tree we get half the number of nodes as were at the previous level, and an additional height of
one. The maximum sum of total distances that elements can go is therefore
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logn' n
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The summation on the right is known to have a closed-form solution of approximately 2, so this algorithm takes
©(n) time in the worst case. This is far better than building the heap one element at a time, which would cost

O(nlogn) in the worst case. It is also faster than the ©(nlogn) average-case time and ©(n?) worst-case time
required to build the BST.

= © O &

Let's look at a visualization to explain why the cost for buildheap is $\theta(n)$. We will use an example with
in the heap. This means that there are 16 leaf nodes and 15 internal nodes.

depth 0
depth 1
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5.17.3. Removing from the heap or updating an object’s priority

& © O &

Here is the process for removing the maximum value from the max heap. We know that this value is at the
position 0), but we also need to update the heap when we remove it.

[88 85|83 |72|73|42|57| 6 |48 60]

Because the heap is logn levels deep, the cost of deleting the maximum element is ©(logn) in the average and
worst cases.

[ Reset | Model Answer]

Instructions:

Perform DeleteMin three times. After each deletioré,saestore the min heap property. Click the "Decrement he



button to remove the last position from the heap. You can swap records In the heap by first clicking one key

another.

Decrement heapsize

Score: 0/ 13, Points remaining: 13, Points lost: 0

[21

22

34132(34|99(82|65|50 91]

2 3 4 5 6 7 8 9
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Perhaps we want to remove an arbitrary node from the heap. (Of course, the client that wants to do the dele
know the proper index for the thing to be deleted. Let's see how to remove the value at position 1 in the heap.

[88 85|83 |72|73|42|57] 6 |48 60]

For some applications, objects might get their priority modified. One solution in this case is to remove the object and
reinsert it. To do this, the application needs to know the position of the object in the heap. Another option is to
change the priority value of the object, and then update its position in the heap. Note that a remove operation
implicitly has to do this anyway, since when the last element in the heap is swapped with the one being removed,
that value might be either too small or too big for its new position. So we use a utility method called update in both
the remove and modify methods to handle this process.

5.17.4. Priority Queues

The heap is a natural implementation for the priority queue discussed at the beginning of this section. Jobs can be
added to the heap (using their priority value as the ordering key) when needed. Method removemax can be called
whenever a new job is to be executed.

Some applications of priority queues require the ability to change the priority of an object already stored in the
queue. This might require that the object’s position in the heap representation be updated. Unfortunately, a max
heap is not efficient when searching for an arbitrary value; it is only good for finding the maximum value. However, if
we already know the index for an object within the heap, it is a simple matter to update its priority (including
changing its position to maintain the heap property) or remove it. The remove method takes as input the position of
the node to be removed from the heap. A typical implementation for priority queues requiring updating of priorities
will need to use an auxiliary data structure that supports efficient search for objects (such as a BST). Records in the
auxiliary data structure will store the object’s heap index ;8@ that the object’s priority can be updated. Priority queues



can be helpful for solving graph problems such as single-source shortest paths and minimal-cost spanning
tree.
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05.18 Binary Tree Chapter Summary

Due No Due Date Points 1 Submitting an external tool

05.18 Binary Tree Chapter Summary

5.18. Binary Tree Chapter Summary

5.18.1. Summary Questions

Practicing Binary Tree Chapter Summary

The n nodes in a binary tree can be visited in:

1) time

log n) time

nlogn) time

O 9(
OO
O 0O(n) time
O 9(
O 0(

n2) time
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Current score: O out of

5

Answer

Need help?
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Chapter 6: Sorting

OpenDSA License

OpenDSA is Copyright © 2013-2016 by Ville Karavirta and Cliff Shaffer.
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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6.1. Chapter Introduction: Sorting

We sort many things in our everyday lives: A handful of cards when playing Bridge; bills and other piles of paper;
jars of spices; and so on. And we have many intuitive strategies that we can use to do the sorting, depending on
how many objects we have to sort and how hard they are to move around. Sorting is also one of the most frequently
performed computing tasks. We might sort the records in a database so that we can search the collection efficiently.
We might sort customer records by zip code so that when we print an advertisement we can then mail them more
cheaply. We might use sorting to help an algorithm to solve some other problem. For example, Kruskal’s algorithm
to find a minimal-cost spanning tree must sort the edges of a graph by their lengths before it can process them.

Because sorting is so important, naturally it has been studied intensively and many algorithms have been devised.
Some of these algorithms are straightforward adaptations of schemes we use in everyday life. For example, a
natural way to sort your cards in a bridge hand is to go from left to right, and place each card in turn in its correct
position relative to the other cards that you have already sorted. This is the idea behind Insertion Sort. Other
sorting algorithms are totally alien to how humans do things, having been invented to sort thousands or even
millions of records stored on the computer. For example, no normal person would use Quicksort to order a pile of
bills by date, even though Quicksort is the standard sorting algorithm of choice for most software libraries. After
years of study, there are still unsolved problems related to sorting. New algorithms are still being developed and
refined for special-purpose applications.

Along with introducing this central problem in computer science, studying sorting algorithms helps us to understand
issues in algorithm design and analysis. For example, the sorting algorithms in this chapter show multiple
approaches to using divide and conquer. In particular, there are multiple ways to do the dividing. Mergesort
divides a list in half. Quicksort divides a list into big values and small values. Radix Sort divides the problem by
working on one digit of the key at a time. Sorting algorithms can also illustrate a wide variety of algorithm analysis
techniques. Quicksort illustrates that it is possible for an algorithm to have an average case whose growth rate is
significantly smaller than its worst case. It is possible to speed up one sorting algorithm (such as Shellsort or
Quicksort) by taking advantage of the best case behavior of another algorithm (Insertion Sort). Special case
behavior by some sorting algorithms makes them a good solution for special niche applications (Heapsort). Sorting
provides an example of an important technique for analyzing the lower bound for a problem. External Sorting
refers to the process of sorting large files stored on disk.

This chapter covers several standard algorithms appropriate for sorting a collection of records that fit into the
computer’s main memory. It begins with a discussion of three simple, but relatively slow, algorithms that require

QD2 tima in tha avarana Aand winAret ~racace tn enrt o rarnarde  Qauaral alaarithme with  ~Ancidarahhy hattar
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06.02 Sorting Terminology and Notation

Due No Due Date Points 1 Submitting an external tool

06.02 Sorting Terminology and Notation

6.2. Sorting Terminology and Notation

6.2.1. Sorting Terminology and Notation

& © O &

Consider a list L containing seven records, named r; through r;.

L

[7'1 To | T3 [ T4 | T5 | T6 7‘7]

As defined, the Sorting Problem allows input with two or more records that have the same key value. Certain
applications require that input not contain duplicate key values. Typically, sorting algorithms can handle duplicate
key values unless noted otherwise. When duplicate key values are allowed, there might be an implicit ordering to
the duplicates, typically based on their order of occurrence within the input. It might be desirable to maintain this
initial ordering among duplicates. A sorting algorithm is said to be stable if it does not change the relative ordering
of records with identical key values. Many, but not all, of the sorting algorithms presented in this chapter are stable,
or can be made stable with minor changes.

When comparing two sorting algorithms, the simplest approach would be to program both and measure their
running times. This is an example of empirical comparison. However, doing fair empirical comparisons can be
tricky because the running time for many sorting algorithms depends on specifics of the input values. The number of
records, the size of the keys and the records, the allowable range of the key values, and the amount by which the
input records are “out of order” can all greatly affect the relative running times for sorting algorithms.

When analyzing sorting algorithms, it is traditional to measure the cost by counting the number of comparisons
made between keys. This measure is usually closely related to the actual running time for the algorithm and has the
advantage of being machine and data-type independent. However, in some cases records might be so large that
their physical movement might take a significant fractioaeaf the total running time. If so, it might be appropriate to



measure the cost by counting the number of swap operations performed by the algorithm. In most applications we
can assume that all records and keys are of fixed length, and that a single comparison or a single swap operation
requires a constant amount of time regardless of which keys are involved. However, some special situations
“change the rules” for comparing sorting algorithms. For example, an application with records or keys having widely
varying length (such as sorting a sequence of variable length strings) cannot expect all comparisons to cost roughly
the same. Not only do such situations require special measures for analysis, they also will usually benefit from a
special-purpose sorting technique.

Other applications require that a small number of records be sorted, but that the sort be performed frequently. An
example would be an application that repeatedly sorts groups of five numbers. In such cases, the constants in the
runtime equations that usually get ignored in asymptotic analysis now become crucial. Note that recursive sorting
algorithms end up sorting lots of small lists as well.

Finally, some situations require that a sorting algorithm use as little memory as possible. We will call attention to
sorting algorithms that require significant extra memory beyond the input array.

Practicing Sorting Introduction: Summary Questions Current score: O out of
5
Sometimes, the constant factors in an algorithm's runtime equation are more Answer

important thant its growth rate. When the problem is sorting, this can happen in

which situation?

(O When the CPU is really fast
Need help?
(O When we are sorting lots of small groups of records.
(O When the records are nearly sorted
(O When there are lots of records

(O When the amount of available space is small

(O When the records are nearly reverse sorted
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06.03 Insertion Sort
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06.03 Insertion Sort

6.3. Insertion Sort

6.3.1. Insertion Sort

What would you do if you have a stack of phone bills from the past two years and you want to order by date? A fairly
natural way to handle this is to look at the first two bills and put them in order. Then take the third bill and put it into
the right position with respect to the first two, and so on. As you take each bill, you would add it to the sorted pile
that you have already made. This simple approach is the inspiration for our first sorting algorithm, called Insertion
Sort.

Insertion Sort iterates through a list of records. For each iteration, the current record is inserted in turn at the correct
position within a sorted list composed of those records already processed. Here is an implementation. The input is
an array named A that stores n records.

Java (Generic)

static <T extends Comparable<T>> void inssort(T[] A) {
for (int i=1; i<A.length; i++) // Insert i'th record
for (int j=i; (j>9) && (A[j].compareTo(A[j-1]) < @); j--)
Swap.swap(A, j, j-1);

(Note that to make the explanation for these sorting algorithms as simple as possible, our visualizations will show
the array as though it stored simple integers rather than more complex records. But you should realize that in
practice, there is rarely any point to sorting an array of simple integers. Nearly always we want to sort more complex
records that each have a key value. In such cases we must have a way to associate a key value with a record. The
sorting algorithms will simply assume that the records are comparable.)

Here we see the first few iterations of Insertion Sort.

& & & &
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Insertion Sort starts with the record in position 1.

@10 15154551178 14]
O 1 2 3 4 5 6 7

This continues on with each record in turn. Call the current record . Insertion Sort will move it to the left so long as
its value is less than that of the record immediately preceding it. As soon as a key value less than or equal to z is
encountered, inssort is done with that record because all records to its left in the array must have smaller keys.

Insertion Sort Visualization OL
[ Run H Reset ] List size:

Your values: I Type some array values, or click 'run' to use random values |

Khan.randRange(6, 10) Khan.randRange(2, arrSize-1) inssortPRO.initJSAV(arrSize, sortPos)

Your task in this exercise is to show the behavior for one iteration of the outer for loop of Insertion Sort. In the
array displayed below, the record at position sortPos is highlighted. Insertion Sort has already processed the
values to the left of position sortPos, so those elements are sorted.

Perform the next part of Insertion Sort to move the highlighted record to its proper place in the array. To swap

PR DT I UL S JUND N ROT E L L L S



WO €1ements, Cl1CK On e IIrst anda men CliCK on me seconda.

[inssortPRO.userInput]

if (!inssortPRO.checkAnswer(arrSize) && !guess[0]) { return ""; // User did not click, and correct answer is not
// initial array state } else { return inssortPRO.checkAnswer(arrSize); }

Insert the highlighted element into its proper position in the array using Insertion Sort.

Nothing to the right of position sortPos should be changed.

All elements from position 0 to position sortPos should be in ascending order.

6.3.2. Insertion Sort Analysis

= O & &

We first examine the worst case cost.
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Now we will consider the best case cost.

& © O &

Finally, consider the average case cost.
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While the best case is significantly faster than the average and worst cases, the average and worst cases are
usually more reliable indicators of the “typical” running time. However, there are situations where we can expect the
input to be in sorted or nearly sorted order. One example is when an already sorted list is slightly disordered by a
small number of additions to the list; restoring sorted order using Insertion Sort might be a good idea if we know that
the disordering is slight. And even when the input is not perfectly sorted, Insertion Sort’s cost goes up in proportion
to the number of inversions. So a “nearly sorted” list will always be cheap to sort with Insertion Sort. Examples of
algorithms that take advantage of Insertion Sort’s near-best-case running time are Shellsort and Quicksort.

Counting comparisons or swaps Yyields similar results. Each time through the inner for loop yields both a
comparison and a swap, except the last (i.e., the comparison that fails the inner for loop’s test), which has no swap.
Thus, the number of swaps for the entire sort operation is n — 1 less than the number of comparisons. This is 0 in
the best case, and ©(n?) in the average and worst cases.

Later we will see algorithms whose growth rate is much better than ©(n?). Thus for larger arrays, Insertion Sort will
not be so good a performer as other algorithms. So Insertion Sort is not the best sorting algorithm to use in most
situations. But there are special situations where it is ideal. We already know that Insertion Sort works great when
the input is sorted or nearly so. Another good time to use Insertion Sort is when the array is very small, since
Insertion Sort is so simple. The algorithms that have better asymptotic growth rates tend to be more complicated,
which leads to larger constant factors in their running time. That means they typically need fewer comparisons for
larger arrays, but they cost more per comparison. This observation might not seem that helpful, since even an
algorithm with high cost per comparison will be fast on small input sizes. But there are times when we might need to
do many, many sorts on very small arrays. You should spend some time right now trying to think of a situation where
you will need to sort many small arrays. Actually, it happens a lot.
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See Computational Fairy Tales: Why Tailors Use Insertion Sort for a discussion on how the relative costs of
search and insert can affect what is the best sort algorithm to use.
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06.04 Selection Sort
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06.04 Selection Sort

6.4. Selection Sort

6.4.1. Selection Sort

Consider again the problem of sorting a pile of phone bills for the past year. Another intuitive approach might be to
look through the pile until you find the bill for January, and pull that out. Then look through the remaining pile until
you find the bill for February, and add that behind January. Proceed through the ever-shrinking pile of bills to select
the next one in order until you are done. This is the inspiration for our last ©(n?) sort, called Selection Sort. The i’th
pass of Selection Sort “selects” the i’'th largest key in the array, placing that record at the end of the array. In other
words, Selection Sort first finds the largest key in an unsorted list, then the next largest, and so on. lts unique
feature is that there are few record swaps. To find the next-largest key value requires searching through the entire
unsorted portion of the array, but only one swap is required to put the record into place. Thus, the total number of
swaps required will be n — 1 (we get the last record in place “for free”).

Here is an implementation for Selection Sort.

Java (Generic)

static <T extends Comparable<T>> void selsort(T[] A) {
for (int i=0; i<A.length-1; i++) { // Select i1'th biggest record
int bigindex = 0; // Current biggest 1index
for (int j=1; j<A.length-i; j++) // Find the max value
if (A[j].compareTo(A[bigindex]) > @) // Found something bigger
bigindex = j; // Remember bigger index
Swap.swap(A, bigindex, A.length-i-1); // Put it into place
}
}

Consider the example of the following array.

= O & &
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Moving from left to right, find the element with the greatest value.

@10 15154 55| 11|78 14]
0O 1 2 3 4 5 6 7

Now we continue with the second pass. However, since the largest record is already at the right end, we will not

need to look at it again.

& © & &

Second pass: moving from left to right, find the element with the second greatest value.

[20 10|15 54|55 11| 14 78]
0 1 2 3 4 5 6 7

Selection Sort continues in this way until the entire array is sorted.

The following visualization puts it all together.

Selection Sort Visualization
[ Run H Reset ] List size:

Your values: I Type some array values, or click 'run' to use random values
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Now try for yourself to see if you understand how Selection Sort works.

Khan.randRange(7, 9) Khan.randRange(4, arrSize-1) selsortPRQO.initJSAV (arrSize, sortPos)
In the array of size arrSize displayed below, the element at position sortPos is highlighted. The array represents
an intermediate state in Selection Sort, with all elements to the right of the highlighted element holding the

biggest values in the array.

Perform the next iteration of Selection Sort, to put the proper array element into the highlighted position. To
swap two elements, click on the first and then click on the second.

[selsortPRO.userInput]
if (!selsortPRO.check Answer(arrSize) && !guess[0]) { return ""; // User did not click, and correct answer is not
// initial array state } else { return selsortPRO.checkAnswer(arrSize); }

Determine the record that should appear at index sortPos using Selection Sort.

Selection sort will place the largest record in the range [0 to sortPos] at position sortPos.

6.4.2. Selection Sort Analysis

Any algorithm can be written in slightly different ways. For example, we could have written Selection Sort to find the

smallest record, the next smallest, and so on. We wrote this version of Selection Sort to mimic the behavior of our

Bubble Sort implementation as closely as possible. This shows that Selection Sort is essentially a Bubble Sort
except that rather than repeatedly swapping adjacent values to get the next-largest record into place, we instead
remember the position of the record to be selected and do one swap at the end.

This visualization analyzes the number of comparisons and swaps required by Selection Sort.

1/ 40 m m m m
<< < > >>
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What is the cost for Selection Sort?

There is another approach to keeping the cost of swapping records low, and it can be used by any sorting algorithm
even when the records are large. This is to have each element of the array store a pointer to a record rather than
store the record itself. In this implementation, a swap operation need only exchange the pointer values. The large
records do not need to move. This technique is illustrated by the following visualization. Additional space is needed
to store the pointers, but the return is a faster swap operation.

= © O &

Here we see an array with references to four records.

= Key =42
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o

Here are some review questions to check how well you understand Selection Sort.
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06.05 The Cost of Exchange Sorting
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06.05 The Cost of Exchange Sorting

6.5. The Cost of Exchange Sorting

6.5.1. The Cost of Exchange Sorting

Here is a summary for the cost of Insertion Sort, Bubble Sort, and Selection Sort in terms of their required number of
comparisons and swaps in the best, average, and worst cases. The running time for each of these sorts is ©(n?) in
the average and worst cases.

Insertion Bubble Selection
Comparisons:
Best Case O(n) O(n?) O(n?)
n?) e(n?) O(n?)
n?) e(n%) e(n?)

Average Case (C]
Worst Case C]

Swaps:
Best Case 0 0 O(n)
Average Case  ©(n?) O(n?) O(n)
Worst Case O(n?) O(n?) ©(n)

The remaining sorting algorithms presented in this tutorial are significantly better than these three under typical
conditions. But before continuing on, it is instructive to investigate what makes these three sorts so slow. The crucial
bottleneck is that only adjacent records are compared. Thus, comparisons and moves (for Insertion and Bubble
Sort) are by single steps. Swapping adjacent records is called an exchange. Thus, these sorts are sometimes
referred to as an exchange sort. The cost of any exchange sort can be at best the total number of steps that the
records in the array must move to reach their “correct” location. Recall that this is at least the number of inversions
for the record, where an inversion occurs when a record with key value greater than the current record’s key value
appears before it.

Khan.randRange(4, 6) findInversionsPRO.initJSAV(A) findInversionsPRO.genAnswer()
How many inversions are in the following array?

CorrectAnswer

To count the number of inversions look at each value and count the number of times that a bigger value is to its
left.

The total number of inversions is CorrectAnswer 276



6.5.2. Analysis

= O & &

What is the average number of inversions?

277



278



06.06 Mergesort Concepts
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06.06 Mergesort Concepts

6.6. Mergesort Concepts

6.6.1. Mergesort Concepts

A natural approach to problem solving is divide and conquer. To use divide and conquer when sorting, we might
consider breaking the list to be sorted into pieces, process the pieces, and then put them back together somehow. A
simple way to do this would be to split the list in half, sort the halves, and then merge the sorted halves together.
This is the idea behind Mergesort.

Mergesort is one of the simplest sorting algorithms conceptually, and has good performance both in the asymptotic
sense and in empirical running time. Unfortunately, even though it is based on a simple concept, it is relatively
difficult to implement in practice. Here is a pseudocode sketch of Mergesort:

List mergesort(List inlist) {
if (inlist.length() <= 1) return inlist;;
List L1 = half of the items from inlist;
List L2 = other half of the items from inlist;
return merge(mergesort(Ll), mergesort(L2));

}

Here is a visualization that illustrates how Mergesort works.

Mergesort Visualization C

[ Run H Reset ]List size:

Your values: [ Type some array values, or click 'run' to use random values ]
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The hardest step to understand about Mergesort is the merge function. The merge function starts by examining the
first record of each sublist and picks the smaller value as the smallest record overall. This smaller value is removed
from its sublist and placed into the output list. Merging continues in this way, comparing the front records of the
sublists and continually appending the smaller to the output list until no more input records remain.

Here is pseudocode for merge on lists:

List merge(List L1, List L2) {
List answer = new List();
while (L1 != NULL || L2 != NULL) {
if (L1 == NULL) { // Done L1
answer.append(L2);
L2 = NULL;
b
else if (L2 == NULL) { // Done L2
answer.append(L1);
L1 = NULL;
}
else if (Ll.value() <= L2.value()) {
answer.append(L1l.value());
L1 = Ll.next();
}
else {
answer.append(L2.value());
L2 = L2.next();

}
}

return answer;

}

Here is a visualization for the merge operation.



We will merge two sorted lists into one.

&811 2530] &31720]

0 1 2 3 4 o 1 2 3

Here is a mergesort warmup exercise to practice merging.

Khan.randRange(6, 10) mergesortMergePRQO.initJSAV (arr_size)

Merge the two subarrays below into the larger array. To move a value in a subarray, click on it (it will then be
highlighted in yellow), and then click on the proper position in the array above.

[mergesortMergePRO.userInput]
if (!mergesortMergePRO.checkAnswer(arr_size) && !guess[0]) { return ""; // User did not click, and correct
answer is not // initial array state } else { return mergesortMergePRO.checkAnswer(arr_size); }

Merging the sorted subarrays results in a sorted final array.
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6.6.2. Mergesort Practice Exercise

Now here is a full proficiency exercise to put it all together.

[Reset ] Model AnswerJ O [

Instructions:

Start at the bottom left. Merge two single element arrays to sort a sorted two-element array. Continue mergii
until you reach an array whose child arrays have not BOTH been sorted. Return to single element arrays an
repeat the merging process as necessary until all elements have been merged into a single, sorted array. Tc
merge an element into another array, click the element to select it, then click the position where it should be
the sorted, merged array. Remember, the order in which blocks are merged matters so be sure to select the
smallest blocks first, starting at the left.

Score: 0/ 34, Points remaining: 34, Points lost: 0

]

0

48 (]
0 0 0 0

(0 1 2] g? [0 1 2] g?
; ® ® D (

0

This visualization provides a running time analysis for Merge Sort.
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The analysis of merge sort is straightforward. Consider the following array of 8 elements.
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06.07 Implementing Mergesort

6.7. Implementing Mergesort

6.7.1. Implementing Mergesort

Implementing Mergesort presents a number of technical difficulties. The first decision is how to represent the lists.
Mergesort lends itself well to sorting a singly linked list because merging does not require random access to the list
elements. Thus, Mergesort is the method of choice when the input is in the form of a linked list. Implementing merge
for linked lists is straightforward, because we need only remove items from the front of the input lists and append
items to the output list. Breaking the input list into two equal halves presents some difficulty. Ideally we would just
break the lists into front and back halves. However, even if we know the length of the list in advance, it would still be
necessary to traverse halfway down the linked list to reach the beginning of the second half. A simpler method,
which does not rely on knowing the length of the list in advance, assigns elements of the input list alternating
between the two sublists. The first element is assigned to the first sublist, the second element to the second sublist,
the third to first sublist, the fourth to the second sublist, and so on. This requires one complete pass through the
input list to build the sublists.

When the input to Mergesort is an array, splitting input into two subarrays is easy if we know the array bounds.
Merging is also easy if we merge the subarrays into a second array. Note that this approach requires twice the
amount of space as any of the sorting methods presented so far, which is a serious disadvantage for Mergesort. It is
possible to merge the subarrays without using a second array, but this is extremely difficult to do efficiently and is
not really practical. Merging the two subarrays into a second array, while simple to implement, presents another
difficulty. The merge process ends with the sorted list in the auxiliary array. Consider how the recursive nature of
Mergesort breaks the original array into subarrays. Mergesort is recursively called until subarrays of size 1 have
been created, requiring logn levels of recursion. These subarrays are merged into subarrays of size 2, which are in
turn merged into subarrays of size 4, and so on. We need to avoid having each merge operation require a new
array. With some difficulty, an algorithm can be devised that alternates between two arrays. A much simpler
approach is to copy the sorted sublists to the auxiliary array first, and then merge them back to the original array.

Here is a complete implementation for mergesort following this approach. The input records are in array A. Array
temp is used as a place to temporarily copy records during the merge process. Parameters left and right define
the left and right indices, respectively, for the subarray being sorted. The initial call to mergesort would be
mergesort(array, temparray, 0, n-1).
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static void mergesort(Comparable[] A, Comparable[] temp, int left, int right) {

if (left == right) { return; } // List has one record
int mid = (left+right)/2; // Select midpoint
mergesort (A, temp, left, mid); // Mergesort first half

mergesort(A, temp, mid+l, right); // Mergesort second half

for (int i=left; i<=right; i++) { // Copy subarray to temp
temp[i] = A[i];

}

// Do the merge operation back to A

int i1 = left;

int i2 = mid + 1;

for (int curr = left; curr <= right; curr++) {

if (i1 == mid+1) { // Left sublist exhausted
A[curr] = temp[i2++];

}

else if (i2 > right) { // Right sublist exhausted
A[curr] = temp[il++];

}

else if (temp[il].compareTo(temp[i2]) <= ©) { // Get smaller value
Alcurr] = temp[il++];

by

else{
A[curr] = temp[i2++];

}

¥
}

Here is a visualization for the merge step.

& © & &

Initially, we have the two sorted sublists in array A, and an empty temp array.

An optimized Mergesort implementation is shown below. It reverses the order of the second subarray during the
initial copy. Now the current positions of the two subarrays work inwards from the ends, allowing the end of each
subarray to act as a sentinel for the other. Unlike the previous implementation, no test is needed to check for when
one of the two subarrays becomes empty. This version algg has a second optimization: It uses Insertion Sort to sort



small subarrays whenever the size of the array is smaller than a value defined by THRESHOLD.

static void mergesortOpt(Comparable[] A, Comparable[] temp, int left, int right) {
int i, j, k, mid = (left+right)/2; // Select the midpoint
if (left == right) { return; } // List has one record
if ((mid-left) >= THRESHOLD) { mergesortOpt(A, temp, left, mid); }
else { inssort(A, left, mid); }
if ((right-mid) > THRESHOLD) { mergesortOpt(A, temp, mid+1l, right); }
else { inssort(A, mid+1, right); }
// Do the merge operation. First, copy 2 halves to temp.
for (i=left; i<=mid; i++) { temp[i] = A[i]; }
for (j=right; j>mid; j--) { temp[i++] = A[j]; }
// Merge sublists back to array
for (i=left,j=right,k=left; k<=right; k++) {
if (temp[i].compareTo(temp[j]) <= @) { A[k] = temp[i++]; }
else {
Alk] = temp[j--];
}
}
}

Here is a visualization for the optimized merge step.

& © & &

Initially, we have the two sorted sublists in array A, and an empty temp array.

286



287



06.08 Heapsort

Due No Due Date Points 3 Submitting an external tool

06.08 Heapsort

6.8. Heapsort

6.8.1. Heapsort

Our discussion of Quicksort began by considering the practicality of using a BST for sorting. The BST requires more
space than the other sorting methods and will be slower than Quicksort or Mergesort due to the relative expense of
inserting values into the tree. There is also the possibility that the BST might be unbalanced, leading to a ©(n?)
worst-case running time. Subtree balance in the BST is closely related to Quicksort’s partition step. Quicksort’s pivot
serves roughly the same purpose as the BST root value in that the left partition (subtree) stores values less than the
pivot (root) value, while the right partition (subtree) stores values greater than or equal to the pivot (root).

A good sorting algorithm can be devised based on a tree structure more suited to the purpose. In particular, we
would like the tree to be balanced, space efficient, and fast. The algorithm should take advantage of the fact that
sorting is a special-purpose application in that all of the values to be stored are available at the start. This means
that we do not necessarily need to insert one value at a time into the tree structure.

Heapsort is based on the heap data structure. Heapsort has all of the advantages just listed. The complete binary
tree is balanced, its array representation is space efficient, and we can load all values into the tree at once, taking
advantage of the efficient buildheap function. The asymptotic performance of Heapsort when all of the records
have unique key values is ©(nlogn) in the best, average, and worst cases. It is not as fast as Quicksort in the
average case (by a constant factor), but Heapsort has special properties that will make it particularly useful for
external sorting algorithms, used when sorting data sets too large to fit in main memory.

= O & &

Initially, we start with our unsorted array.
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A complete implementation is as follows.

static void heapsort(Comparable[] A) {
// The heap constructor invokes the buildheap method
MaxHeap H = new MaxHeap(A, A.length, A.length);
for (int i=@; i<A.length; i++) { // Now sort
H.removemax(); // Removemax places max at end of heap
}
}

Here is a warmup practice exercise for Heapsort.

Khan.randRange( 6, 11 ) heapsortStepPRO.initJSAV (arrSize)

Perform one iteration of heap sort. Swap the last key with the largest key and restore the heap in the array/tree
shown below. Use the "Decrement" button to reduce the size of the heap.

[ Reset ][ Decrement Heap Size ]
[heapsortStepPRO.userInput]

if ('guess[0]) { return ""; // User did not click, and correct answer is not // initial array state } else { return
heapsortStepPRO.checkAnswer(arrSize); }

Select the maximum element and move it to the correct location. Then restore the heap order.

Don't forget to decrement the heap size.
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6.8.2. Heapsort Proficiency Practice

Now test yourself to see how well you understand Heapsort. Can you reproduce its behavior?

( Reset | Model Answer j C

Instructions:

Reproduce the behavior of heapsort for the maximum heap below. You can swap keys by clicking the first c
and then the second one in either of the representations (array or binary tree). Begin by swapping the last ki
with the largest key, and reducing the size of the heap by one (by clicking the "Decrement heap size" button

After that, restore the heap property again.
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Decrement heap size ] Score: 0/ 31, Points remaining: 31, Points lost: 0

@80 78151(62(23|72|17 |35 24]
O 1 2 3 4 5 6 7 8 9

6.8.3. Heapsort Analysis

This visualization presents the running time analysis of Heap Sort

= O O &

The first step in heapsort is to heapify the array. This will cost 8(n) running time for an array of size n.
Consider the following structure of a Max Heap
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While typically slower than Quicksort by a constant factor (because unloading the heap using removemax is
somewhat slower than Quicksort’s series of partitions), Heapsort has one special advantage over the other sorts
studied so far. Building the heap is relatively cheap, requiring ©(n) time. Removing the maximum-valued record
from the heap requires O(logn) time in the worst case. Thus, if we wish to find the & records with the largest key
values in an array, we can do so in time ©(n + klogn). If k£ is small, this is a substantial improvement over the time
required to find the k largest-valued records using one of the other sorting methods described earlier (many of which
would require sorting all of the array first). One situation where we are able to take advantage of this concept is in
the implementation of Kruskal’s algorithm for minimal-cost spanning trees. That algorithm requires that edges
be visited in ascending order (so, use a min-heap), but this process stops as soon as the MST is complete. Thus,
only a relatively small fraction of the edges need be sorted.

Another special case arises when all of the records being sorted have the same key value. This represents the best
case for Heapsort. This is because removing the smallest value requires only constant time, since the value
swapped to the top is never pushed down the heap.
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06.09 Sorting Summary Exercises
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06.09 Sorting Summary Exercises

6.9. Sorting Summary Exercises

6.9.1. Sorting Summary Exercises

Here is a complete set of review questions, taken from all of the questions in the modules of this chapter.

Practicing Sorting Chapter Complete Review Current score: O out of
5
Perform one iteration of heap sort. Swap the last key with the largest key and restore Answer

the heap in the array/tree shown below. Use the "Decrement" button to reduce the

size of the heap.

[ Reset H Decrement Heap Size |

Need help?

@ 84| 71(43| 25| 22 27]
o 1 2 3 4 5 6
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Chapter 7: Hashing

OpenDSA License

OpenDSA is Copyright © 2013-2016 by Ville Karavirta and Cliff Shaffer.
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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7.1. Introduction

7.1.1. Introduction

Hashing is a method for storing and retrieving records from a database. It lets you insert, delete, and search for
records based on a search key value. When properly implemented, these operations can be performed in constant
time. In fact, a properly tuned hash system typically looks at only one or two records for each search, insert, or
delete operation. This is far better than the O(logn) average cost required to do a binary search on a sorted array of
n records, or the O(logn) average cost required to do an operation on a binary search tree. However, even though
hashing is based on a very simple idea, it is surprisingly difficult to implement properly. Designers need to pay
careful attention to all of the details involved with implementing a hash system.

A hash system stores records in an array called a hash table, which we will call HT. Hashing works by performing a
computation on a search key K in a way that is intended to identify the position in HT that contains the record with
key K. The function that does this calculation is called the hash function, and will be denoted by the letter h. Since
hashing schemes place records in the table in whatever order satisfies the needs of the address calculation, records
are not ordered by value. A position in the hash table is also known as a slot. The number of slots in hash table HT
will be denoted by the variable M with slots numbered from 0 to M — 1.

The goal for a hashing system is to arrange things such that, for any key value K and some hash function #,
i = h(K) is a slot in the table such that 0 <= i < M, and we have the key of the record stored at HT[i] equal to K.

Hashing is not good for applications where multiple records with the same key value are permitted. Hashing is not a
good method for answering range searches. In other words, we cannot easily find all records (if any) whose key
values fall within a certain range. Nor can we easily find the record with the minimum or maximum key value, or visit
the records in key order. Hashing is most appropriate for answering the question, ‘What record, if any, has key value
K?" For applications where all search is done by exact-match queries, hashing is the search method of
choice because it is extremely efficient when implemented correctly. As this tutorial shows, however, there are
many approaches to hashing and it is easy to devise an inefficient implementation. Hashing is suitable for both in-
memory and disk-based searching and is one of the two most widely used methods for organizing large databases
stored on disk (the other is the B-tree).

As a simple (though unrealistic) example of hashing, consider storing n records, each with a unique key value in the
range 0 to n — 1. A record with key k can be stored in HT[k], and so the hash function is h(k) = k. To find the record
with key value k, look in HT[k].

& © & &

We will demonstrate the simplest hash function, storing records in an array of size 10.
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In most applications, there are many more values in the key range than there are slots in the hash table. For a more
realistic example, suppose the key can take any value in the range 0 to 65,535 (i.e., the key is a two-byte unsigned
integer), and that we expect to store approximately 1000 records at any given time. It is impractical in this situation
to use a hash table with 65,536 slots, because then the vast majority of the slots would be left empty. Instead, we
must devise a hash function that allows us to store the records in a much smaller table. Because the key range is
larger than the size of the table, at least some of the slots must be mapped to from multiple key values. Given a
hash function h and two keys k; and k., if h(k;) = 8 = h(ks) where 3 is a slot in the table, then we say that k; and k,
have a collision at slot 3 under hash function h.

Finding a record with key value K in a database organized by hashing follows a two-step procedure:
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07.02 Hash Function Principles
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07.02 Hash Function Principles

7.2. Hash Function Principles

7.2.1. Hash Function Principles

Hashing generally takes records whose key values come from a large range and stores those records in a table with
a relatively small number of slots. Collisions occur when two records hash to the same slot in the table. If we are
careful—or lucky—when selecting a hash function, then the actual number of collisions will be few. Unfortunately,
even under the best of circumstances, collisions are nearly unavoidable. To illustrate, consider a classroom full of
students. What is the probability that some pair of students shares the same birthday (i.e., the same day of the year,
not necessarily the same year)? If there are 23 students, then the odds are about even that two will share a
birthday. This is despite the fact that there are 365 days in which students can have birthdays (ignoring leap years).
On most days, no student in the class has a birthday. With more students, the probability of a shared birthday
increases. The mapping of students to days based on their birthday is similar to assigning records to slots in a table
(of size 365) using the birthday as a hash function. Note that this observation tells us nothing about which students
share a birthday, or on which days of the year shared birthdays fall.

Try it for yourself. You can use the calculator to see the probability of a collision. The default values are set to show
the number of people in a room such that the chance of a duplicate is just over 50%. But you can set any table size
and any number of records to determine the probability of a collision under those conditions.

Calculate the probability of at!coII|S|on.

Formula Used: 1 — i)
where t is the table size and n is the number of records inserted.

Table size: 365 |

# of records: [23 ]

Use the calculator to answer the following questions.

Practicing Hash Table Collision Probability Exercise Current score: O out of

5
299



In a hash table of 5311 slots, what is the smallest number of records that must be Answer
inserted for the probability of a collision to be 44% or more?

L]

Need help?

To be practical, a database organized by hashing must store records in a hash table that is not so large that it
wastes space. To balance time and space efficiency, this means that the hash table should be around half full.
Because collisions are extremely likely to occur under these conditions (by chance, any record inserted into a table
that is half full should have a collision half of the time), does this mean that we need not worry about how well a
hash function does at avoiding collisions? Absolutely not. The difference between using a good hash function and a
bad hash function makes a big difference in practice in the number of records that must be examined when
searching or inserting to the table. Technically, any function that maps all possible key values to a slot in the hash
table is a hash function. In the extreme case, even a function that maps all records to the same slot in the array is a
hash function, but it does nothing to help us find records during a search operation.

We would like to pick a hash function that maps keys to slots in a way that makes each slot in the hash table have
equal probablility of being filled for the actual set keys being used. Unfortunately, we normally have no control over
the distribution of key values for the actual records in a given database or collection. So how well any particular
hash function does depends on the actual distribution of the keys used within the allowable key range. In some
cases, incoming data are well distributed across their key range. For example, if the input is a set of random
numbers selected uniformly from the key range, any hash function that assigns the key range so that each slot in
the hash table receives an equal share of the range will likely also distribute the input records uniformly within the
table. However, in many applications the incoming records are highly clustered or otherwise poorly distributed.
When input records are not well distributed throughout the key range it can be difficult to devise a hash function that
does a good job of distributing the records throughout the table, especially if the input distribution is not known in
advance.
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There are many reasons why data values might be poorly distributed.

1. Natural frequency distributions tend to follow a common pattern where a few of the entities occur frequently while
most entities occur relatively rarely. For example, consider the populations of the 100 largest cities in the United
States. If you plot these populations on a numberline, most of them will be clustered toward the low side, with a
few outliers on the high side. This is an example of a Zipf distribution. Viewed the other way, the home town for a
given person is far more likely to be a particular large city than a particular small town.

2. Collected data are likely to be skewed in some way. Field samples might be rounded to, say, the nearest 5 (i.e.,
all numbers end in 5 or 0).

3. If the input is a collection of common English words, the beginning letter will be poorly distributed.
Note that for items 2 and 3 on this list, either high- or low-order bits of the key are poorly distributed.
When designing hash functions, we are generally faced with one of two situations:

1. We know nothing about the distribution of the incoming keys. In this case, we wish to select a hash function that
evenly distributes the key range across the hash table, while avoiding obvious opportunities for clustering such
as hash functions that are sensitive to the high- or low-order bits of the key value.

2. We know something about the distribution of the incoming keys. In this case, we should use a distribution-
dependent hash function that avoids assigning clusters of related key values to the same hash table slot. For
example, if hashing English words, we should not hash on the value of the first character because this is likely to
be unevenly distributed.

In the next module, you will see several examples of hash functions that illustrate these points.
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07.03 Sample Hash Functions

7.3. Sample Hash Functions

7.3.1. Sample Hash Functions

7.3.1.1. Simple Mod Function

Consider the following hash function used to hash integers to a table of sixteen slots.

int h(int x) {
return x % 16;

}

Here “%” is the symbol for the mod function.

& © & &

We will demonstrate the mod hash function. To make the compuation easy (because you can probably do mc
your head easily) we will store records in an array of size 10.

Recall that the values 0 to 15 can be represented with four bits (i.e., 0000 to 1111). The value returned by this hash
function depends solely on the least significant four bits of the key. Because these bits are likely to be poorly
distributed (as an example, a high percentage of the keys might be even numbers, which means that the low order
bit is zero), the result will also be poorly distributed. This3%)éample shows that the size of the table M can have a big



effect on the performance of a hash system because the table size is typically used as the modulus to ensure that
the hash function produces a number in the range 0 to M — 1.

7.3.1.2. Binning

Say we are given keys in the range 0 to 999, and have a hash table of size 10. In this case, a possible hash function
might simply divide the key value by 100. Thus, all keys in the range 0 to 99 would hash to slot 0, keys 100 to 199
would hash to slot 1, and so on. In other words, this hash function “bins” the first 100 keys to the first slot, the next
100 keys to the second slot, and so on.

Binning in this way has the problem that it will cluster together keys if the distribution does not divide evenly on the
high-order bits. In the above example, if more records have keys in the range 900-999 (first digit 9) than have keys
in the range 100-199 (first digit 1), more records will hash to slot 9 than to slot 1. Likewise, if we pick too big a value
for the key range and the actual key values are all relatively small, then most records will hash to slot 0. A similar,
analogous problem arises if we were instead hashing strings based on the first letter in the string.

= © 0 &

We will demonstrate the Binning hash function. To make the compuation easy (because you can probably divic
your head easily) we will store records in an array of size 10.

_ )

o 1 2 3 4 5 6 7 8 9

In general with binning we store the record with key value i at array position i/ X for some value X (using integer
division). A problem with Binning is that we have to know the key range so that we can figure out what value to use
for X. Let's assume that the keys are all in the range 0 to 999. Then we want to divide key values by 100 so that the
result is in the range 0 to 9. There is no particular limit on the key range that binning could handle, so long as we
know the maximum possible value in advance so that we can figure out what to divide the key value by.
Alternatively, we could also take the result of any binning computation and then mod by the table size to be safe. So
if we have keys that are bigger than 999 when dividing by 100, we can still make sure that the result is in the range
0 to 9 with a mod by 10 step at the end.

Binning looks at the opposite part of the key value from the mod function. The mod function, for a power of two,
looks at the low-order bits, while binning looks at the high-order bits. Or if you want to think in base 10 instead of
base 2, modding by 10 or 100 looks at the low-order digits, while binning into an array of size 10 or 100 looks at the
high-order digits.

As another example, consider hashing a collection of keys whose values follow a normal distribution, as illustrated
by Figure 7.3.1. Keys near the mean of the normal distribution are far more likely to occur than keys near the tails of
the distribution. For a given slot, think of where the keys come from within the distribution. Binning would be taking
thick slices out of the distribution and assign those slices to hash table slots. If we use a hash table of size 8, we
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distribution is more likely to generate keys from the middle slice, the middle slot of the table is most likely to be
used. In contrast, if we use the mod function, then we are assigning to any given slot in the table a series of thin
slices in steps of 8. In the normal distribution, some of these slices associated with any given slot are near the tails,
and some are near the center. Thus, each table slot is equally likely (roughly) to get a key value.

(a) Binning

d N

(b) Mod function

Figure 7.3.1: A comparison of binning vs. modulus as a hash function.

7.3.1.3. The Mid-Square Method

A good hash function to use with integer key values is the mid-square method. The mid-square method squares
the key value, and then takes out the middle r bits of the result, giving a value in the range 0 to 2" — 1. This works
well because most or all bits of the key value contribute to the result. For example, consider records whose keys are
4-digit numbers in base 10, as shown in Figure 7.3.2. The goal is to hash these key values to a table of size 100
(i.e., a range of 0 to 99). This range is equivalent to two digits in base 10. That is, r = 2. If the input is the number
4567, squaring yields an 8-digit number, 20857489. The middle two digits of this result are 57. All digits of the
original key value (equivalently, all bits when the number is viewed in binary) contribute to the middle two digits of
the squared value. Thus, the result is not dominated by the distribution of the bottom digit or the top digit of the
original key value. Of course, if the key values all tend to be small numbers, then their squares will only affect the
low-order digits of the hash value.

4567
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31969
27402
22835
18268

4567

Figure 7.3.2: An example of the mid-square method. This image shows the traditional gradeschool long
multiplication process. The value being squared is 4567. The result of squaring is 20857489. At the
bottom, of the image, the value 4567 is show again, with each digit at the bottom of a “V”. The
associated “V” is showing the digits from the result that are being affected by each digit of the input. That
is, “4” affects the output digits 2, 0, 8, 5, an 7. But it has no affect on the last 3 digits. The key point is
that the middle two digits of the result (5 and 7) are affected by every digit of the input.

Here is a little calculator for you to see how this works. Start with ‘4567’ as an example.

Type a number. This is tuned for 4-digit numbers, but you can use any value.
The number will be squared, and the two middle digits (if the result is an 8-
digit number) are highlighted.

Key Value: H Calculate ]

7.3.2. A Simple Hash Function for Strings

Now we will examine some hash functions suitable for storing strings of characters. We start with a simple
summation function.

int sascii(String x, int M) {
char ch[];
ch = x.toCharArray();
int xlength = x.length();

int i, sum;

for (sum=0, i=0; i < x.length(); i++) {
sum += ch[i];

}

return sum % M;

This function sums the ASCII values of the letters in a string. If the hash table size M is small compared to the
resulting summations, then this hash function should do a good job of distributing strings evenly among the hash
table slots, because it gives equal weight to all characters in the string. This is an example of the folding method to

designing a hash function. Note that the order of the characters in the string has no effect on the result. A similar



method for integers would add the digits of the key value, assuming that there are enough digits to
1. keep any one or two digits with bad distribution from skewing the results of the process and
2. generate a sum much larger than M.

As with many other hash functions, the final step is to apply the modulus operator to the result, using table size M to
generate a value within the table range. If the sum is not sufficiently large, then the modulus operator will yield a
poor distribution. For example, because the ASCII value for ‘A’ is 65 and ‘Z’ is 90, sum will always be in the range
650 to 900 for a string of ten upper case letters. For a hash table of size 100 or less, a reasonable distribution
results. For a hash table of size 1000, the distribution is terrible because only slots 650 to 900 can possibly be the
home slot for some key value, and the values are not evenly distributed even within those slots.

Now you can try it out with this calculator.

Type a string. The sum of the ASCII values will be computed.

Key Value: H Calculate

7.3.3. String Folding

Here is a much better hash function for strings.

// Use folding on a string, summed 4 bytes at a time
int sfold(String s, int M) {
long sum = @, mul = 1;
for (int i = 0; i < s.length(); i++) {
mul = (i % 4 ==90) ? 1 : mul * 256;
sum += s.charAt(i) * mul;
}
return (int)(Math.abs(sum) % M);

}

This function takes a string as input. It processes the string four bytes at a time, and interprets each of the four-byte
chunks as a single long integer value. The integer values for the four-byte chunks are added together. In the end,
the resulting sum is converted to the range 0 to M — 1 using the modulus operator.

For example, if the string “aaaabbbb” is passed to sfold, then the first four bytes (“aaaa”) will be interpreted as the
integer value 1,633,771,873, and the next four bytes (“bbbb”) will be interpreted as the integer value 1,650,614,882.
Their sum is 3,284,386,755 (when treated as an unsigned integer). If the table size is 101 then the modulus function

will cause this key to hash to slot 75 in the table.
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Now you can try it out with this calculator.

Type a string. The sfold function will be computed.

Key Value: H Calculate

For any sufficiently long string, the sum for the integer quantities will typically cause a 32-bit integer to overflow (thus
losing some of the high-order bits) because the resulting values are so large. But this causes no problems when the
goal is to compute a hash function.

The reason that hashing by summing the integer representation of four letters at a time is superior to summing one
letter at a time is because the resulting values being summed have a bigger range. This still only works well for
strings long enough (say at least 7-12 letters), but the original method would not work well for short strings either.
There is nothing special about using four characters at a time. Other choices could be made. Another alternative
would be to fold two characters at a time.

7.3.4. Hash Function Practice

Now here is an exercise to let you practice these various hash functions. You should use the calculators above for
the more complicated hash functions.

Practicing Hash Functions: Proficency Summary Current score: O out of
5
Given a hash table size of 100, a key in the range 0 to 9999, and using the binning Answer

hash function, what slot in the table will 5036 hash to?

L

Need help?

307



7.3.5. Hash Function Review Questions

Here are some review questions.

Practicing Hash Functions: Summary Questions Current score: O out of
5

Answer TRUE or FALSE. Answer

For the string hash functions, the size of the hash table limits the length of the Check Answer

string that can be hashed.

Need help?

I'd like a hint

O True

O False
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07.04 Open Hashing

Due No Due Date Points 1 Submitting an external tool

07.04 Open Hashing

7.4. Open Hashing

7.4.1. Open Hashing

While the goal of a hash function is to minimize collisions, some collisions are unavoidable in practice. Thus,
hashing implementations must include some form of collision resolution policy. Collision resolution techniques can
be broken into two classes: open hashing (also called separate chaining) and closed hashing (also called open
addressing). (Yes, it is confusing when “open hashing” means the opposite of “open addressing”, but unfortunately,
that is the way it is.) The difference between the two has to do with whether collisions are stored outside the table
(open hashing), or whether collisions result in storing one of the records at another slot in the table (closed hashing).

The simplest form of open hashing defines each slot in the hash table to be the head of a linked list. All records that
hash to a particular slot are placed on that slot’s linked list. The following figure illustrates a hash table where each
slot points to a linked list to hold the records associated with that slot. The hash function used is the simple mod
function.
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Records within a slot’s list can be ordered in several ways: by insertion order, by key value order, or by frequency-
of-access order. Ordering the list by key value providg%an advantage in the case of an unsuccessful search,



because we know to stop searching the list once we encounter a key that is greater than the one being searched
for. If records on the list are unordered or ordered by frequency, then an unsuccessful search will need to visit every
record on the list.

Given a table of size M storing N records, the hash function will (ideally) spread the records evenly among the M
positions in the table, yielding on average N/M records for each list. Assuming that the table has more slots than
there are records to be stored, we can hope that few slots will contain more than one record. In the case where a list
is empty or has only one record, a search requires only one access to the list. Thus, the average cost for hashing
should be ©(1). However, if clustering causes many records to hash to only a few of the slots, then the cost to
access a record will be much higher because many elements on the linked list must be searched.

Open hashing is most appropriate when the hash table is kept in main memory, with the lists implemented by a
standard in-memory linked list. Storing an open hash table on disk in an efficient way is difficult, because members
of a given linked list might be stored on different disk blocks. This would result in multiple disk accesses when
searching for a particular key value, which defeats the purpose of using hashing.

There are similarities between open hashing and Binsort. One way to view open hashing is that each record is
simply placed in a bin. While multiple records may hash to the same bin, this initial binning should still greatly
reduce the number of records accessed by a search operation. In a similar fashion, a simple Binsort reduces the
number of records in each bin to a small number that can be sorted in some other way.

Practicing Open Hashing Proficiency Exercise Current score: 0 out of
5
On the left is an array of numbers that are to be inserted (in order, from top to bottom) Answer

into the hash table on the right. The hash table uses open hashing to deal with

collisions.

Move each record on the left to the appropriate bin on the right when using the
simple mod hash function. Need help?
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07.05 Bucket Hashing

Due No Due Date Points 2 Submitting an external tool

07.05 Bucket Hashing

7.5. Bucket Hashing

7.5.1. Bucket Hashing

Closed hashing stores all records directly in the hash table. Each record R with key value kr has a home position
that is h(kg), the slot computed by the hash function. If R is to be inserted and another record already occupies R'’s
home position, then R will be stored at some other slot in the table. It is the business of the collision resolution policy
to determine which slot that will be. Naturally, the same policy must be followed during search as during insertion, so
that any record not found in its home position can be recovered by repeating the collision resolution process.

One implementation for closed hashing groups hash table slots into buckets. The M slots of the hash table are
divided into B buckets, with each bucket consisting of M /B slots. The hash function assigns each record to the first
slot within one of the buckets. If this slot is already occupied, then the bucket slots are searched sequentially until an
open slot is found. If a bucket is entirely full, then the record is stored in an overflow bucket of infinite capacity at
the end of the table. All buckets share the same overflow bucket. A good implementation will use a hash function
that distributes the records evenly among the buckets so that as few records as possible go into the overflow
bucket.

When searching for a record, the first step is to hash the key to determine which bucket should contain the record.
The records in this bucket are then searched. If the desired key value is not found and the bucket still has free slots,
then the search is complete. If the bucket is full, then it is possible that the desired record is stored in the overflow
bucket. In this case, the overflow bucket must be searched until the record is found or all records in the overflow
bucket have been checked. If many records are in the overflow bucket, this will be an expensive process.

& © O &

Demonstration of bucket hash for an array of size 10 storing 5 buckets, each two slots in size. The alternating
white cells indicate the buckets.
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Now you can try it yourself.

Practicing Bucket Hashing Proficiency Exercise

You are given a hash table of 5 buckets, each of size 2. Using the first bucket hash

method described above, put key value 914 into the hash table.

B4

Hash Table

0

—_—

(55)

662
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Overflow
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Current score: O out of

5

Answer

Need help?



7.5.2. An Alternate Approach

A simple variation on bucket hashing is to hash a key value to some slot in the hash table as though bucketing were
not being used. If the home position is full, then we search through the rest of the bucket to find an empty slot. If all
slots in this bucket are full, then the record is assigned to the overflow bucket. The advantage of this approach is
that initial collisions are reduced, because any slot can be a home position rather than just the first slot in the
bucket.

& © & &

Demonstration of alternative bucket hash for an array of size 10 storing 5 buckets, each two slots in size. The
gray and white cells indicate the buckets.
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Bucket methods are good for implementing hash tables stored on disk, because the bucket size can be set to the
size of a disk block. Whenever search or insertion occurs, the entire bucket is read into memory. Because the entire
bucket is then in memory, processing an insert or search operation requires only one disk access, unless the bucket
is full. If the bucket is full, then the overflow bucket must be retrieved from disk as well. Naturally, overflow should be
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Practicing Alternate Bucket Hashing Proficiency Exercise

You are given a hash table of 5 buckets, each of size 2. Using the alternate bucket
hash method described above, put key value 157 into the hash table.

Hash Table

0

—_—
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Current score: O out of

5

Answer

Need help?
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07.06 Collision Resolution

Due No Due Date Points 1 Submitting an external tool

07.06 Collision Resolution

7.6. Collision Resolution

7.6.1. Collision Resolution

We now turn to the most commonly used form of hashing: closed hashing with no bucketing, and a collision
resolution policy that can potentially use any slot in the hash table.

During insertion, the goal of collision resolution is to find a free slot in the hash table when the home position for
the record is already occupied. We can view any collision resolution method as generating a sequence of hash table
slots that can potentially hold the record. The first slot in the sequence will be the home position for the key. If the
home position is occupied, then the collision resolution policy goes to the next slot in the sequence. If this is
occupied as well, then another slot must be found, and so on. This sequence of slots is known as the probe
sequence, and it is generated by some probe function that we will call p. Insertion works as follows.

// Insert e into hash table HT
void hashInsert(Key k, Elem e) {
int home; // Home position for e
int pos = home = h(k); // Init probe sequence
for (int i=1; EMPTYKEY != (HT[pos]).key(); i++) {
pos = (home + p(k, i)) % M; // probe
if (k == HT[pos].key()) {
println("Duplicates not allowed");
return;

}

¥
HT[pos] = e;

}

Method hashInsert first checks to see if the home slot for the key is empty. If the home slot is occupied, then we
use the probe function p(k, ) to locate a free slot in the table. Function p has two parameters, the key k£ and a count
1 of where in the probe sequence we wish to be. That is, to get the first position in the probe sequence after the
home slot for key K, we call p(K,1). For the next slot in the probe sequence, call p(K,2). Note that the probe
function returns an offset from the original home position, rather than a slot in the hash table. Thus, the for loop in
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function to the home position. The 7 th call to p returns the i th offset to be used.

Searching in a hash table follows the same probe sequence that was followed when inserting records. In this way, a
record not in its home position can be recovered. An implementation for the search procedure is as follows.

// Search for the record with Key K
bool hashSearch(Key K, Elem e) {
int home; // Home position for K
int pos = home = h(K); // Initial position is the home slot
for (int i = 1;
(K !'= (HT[pos]).key()) && (EMPTYKEY != (HT[pos]).key());

i++) {
pos = (home + p(K, i)) % M; // Next on probe sequence
}
if (K == (HT[pos]).key()) { // Found it
e = HT[pos];
return true;
}
else { return false; } // K not in hash table

}

Both the insert and the search routines assume that at least one slot on the probe sequence of every key will be
empty. Otherwise they will continue in an infinite loop on unsuccessful searches. Thus, the hash system should
keep a count of the number of records stored, and refuse to insert into a table that has only one free slot.

The simplest approach to collsion resolution is simply to move down the table from the home slot until a free slot is
found. This is known as linear probing. The probe function for simple linear probing is p(K,i) = i. That is, the  th
offset on the probe sequence is just i, meaning that the 4 th step is simply to move down ; slots in the table. Once
the bottom of the table is reached, the probe sequence wraps around to the beginning of the table (since the last
step is to mod the result to the table size). Linear probing has the virtue that all slots in the table will be candidates
for inserting a new record before the probe sequence returns to the home position.

= © & &

The simplest collsion resolution method is called linear probing. We simply move to the right in the table fromr
slot, wrapping around to the beginning if necessary.

Can you see any reason why this might not be the best a3o1%roach to collision resolution?



7.6.1.1. The Problem with Linear Probing

While linear probing is probably the first idea that comes to mind when considering collision resolution policies, it is
not the only one possible. Probe function p allows us many options for how to do collision resolution. In fact, linear
probing is one of the worst collision resolution methods. The main problem is illustrated by the next slideshow.

& © O &

Consider the situation where we left off in the last slide show. If at this point we wanted to insert the value
would have to probe all the way to slot 2.

[9050 7200 9877|2037|1 05§
0o 1 2 3 4 5 6 7 8 9

Again, the ideal behavior for a collision resolution mechanism is that each empty slot in the table will have equal
probability of receiving the next record inserted (assuming that every slot in the table has equal probability of being
hashed to initially). This tendency of linear probing to cluster items together is known as primary clustering. Small
clusters tend to merge into big clusters, making the problem worse. The objection to primary clustering is that it
leads to long probe sequences.

10 "h(k) = k mod " + arrSize probeCommon.initJSAV("HashLinearPPRO", arrSize)
Given the following hash table, use hash function hashFunction and handle collisions using Linear Probing.

In which slot should the record with key value probeCommon.currentKey be inserted?

[probeCommon.userlnput]

if (!probeCommon.checkAnswer(arrSize) && !guess[0]) { return ""; // User did not click, and correct answer is
not // initial array state } else { return probeCommon.checkAnswer(arrSize); }

Linear probing is the simple one.

First use the hash function to computer the home slot.

If there is a collsion, then just step to the right by one step at a time until an empty slot is found.

If we reach the end of the array, then cycle around to the beginning.
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07.07 Improved Collision Resolution

Due No Due Date Points 4 Submitting an external tool

07.07 Improved Collision Resolution

7.7. Improved Collision Resolution

7.7.1. Linear Probing by Steps

How can we avoid primary clustering? One possible improvement might be to use linear probing, but to skip slots by
some constant ¢ other than 1. This would make the probe function p(K,i) = ci, and so the i th slot in the probe
sequence will be (h(K) +ic) mod M. In this way, records with adjacent home positions will not follow the same
probe sequence.

= O & &

When doing collision resolution with linear probing by steps of size 2 on a hash table of size 10, a record that
slot 4...

One quality of a good probe sequence is that it will cycle through all slots in the hash table before returning to the
home position. Clearly linear probing (which “skips” slots by one each time) does this. Unfortunately, not all values
for ¢ will make this happen. For example, if ¢ =2 and the table contains an even number of slots, then any key
whose home position is in an even slot will have a probe sequence that cycles through only the even slots.
Likewise, the probe sequence for a key whose home position is in an odd slot will cycle through the odd slots. Thus,
this combination of table size and linear probing constant effectively divides the records into two sets stored in two
disjoint sections of the hash table. So long as both sections of the table contain the same number of records, this is
not really important. However, just from chance it is likely that one section will become fuller than the other, leading
to more collisions and poorer performance for those records. The other section would have fewer records, and thus
better performance. But the overall system performance will be degraded, as the additional cost to the side that is
more full outweighs the improved performance of the less-full side.
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is, c and M must share no factors). For a hash table of size M = 10, if ¢ is any one of 1, 3, 7, or 9, then the probe
sequence will visit all slots for any key. When M =11, any value for ¢ between 1 and 10 generates a probe
sequence that visits all slots for every key.

& © & &

When doing collision resolution with linear probing by steps of size 3 on a hash table of size 10, a record that
slot 4...

_ )

o 1 2 3 4 5 6 7 8 9

Now you can practice linear probing by different step sizes.

Practicing Hashing Linear Probing by Steps Proficiency Exercise current score: 0 out of
5

Given the following hash table, use hash function h(k) = k mod 10 and handle Answer
collisions using Linear Probing by Steps with probe function P(K, i) = 2i.

In which slot should the record with key value 845 be inserted?

Need help?

[240 782 654|245 877|728 709]
0 9
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7.7.2. Pseudo-Random Probing

Consider the situation where ¢ =2 and we wish to insert a record with key k; such that h(k;) = 3. The probe
sequence for k; is 3, 5, 7, 9, and so on. If another key k, has home position at slot 5, then its probe sequence will
be 5, 7, 9, and so on. The probe sequences of k; and k, are linked together in a manner that contributes to
clustering. In other words, linear probing with a value of ¢ > 1 does not solve the problem of primary clustering. We
would like to find a probe function that does not link keys together in this way. We would prefer that the probe
sequence for k, after the first step on the sequence should not be identical to the probe sequence of k,. Instead,
their probe sequences should diverge.

The ideal probe function would select the next position on the probe sequence at random from among the unvisited
slots; that is, the probe sequence should be a random permutation of the hash table positions. Unfortunately, we
cannot actually select the next position in the probe sequence at random, because we would not be able to
duplicate this same probe sequence when searching for the key. However, we can do something similar called
pseudo-random probing. In pseudo-random probing, the ¢ th slot in the probe sequence is (h(K) +r;) mod M
where r; is the ¢ th value in a random permutation of the numbers from 1 to M — 1. All inserts and searches must
use the same sequence of random numbers. The probe function would be p(K,i) = Permutation[i] where
Permutation is an array of length M that stores a value of 0 in position Permutation[0], and stores a random
permutation of the values from 1to M — 1 in slots 1 to M — 1.

& © & &

Let's see an example of collision resolution using pseudorandom probing on a hash table of size 10 using
mod hash function.

Here is a practice exercise for pseudo-random probing.
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Pseudo-random probing exhibits another desirable feature in a hash function.

= O O &

First recall what happens with linear probing by steps of 2. Say that one record hashes to slot 4, and another
slot 6.

L 104 936 ]
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7.7.3. Quadratic Probing

Another probe function that eliminates primary clustering is called quadratic probing. Here the probe function is
some quadratic function p(K,i) = c1i2 + c2i + c3 for some choice of constants ¢y, ¢z, and cs.

The simplest variation is p(K,i) = % (i.e., c; = 1, c2 = 0, and c3 = 0). Then the i th value in the probe sequence
would be (h(K) +i?) mod M.

= © O &

Under quadratic probing, two keys with different home positions will have diverging probe sequences. Consic
that hashes to slot 5. Its probe sequence is 5, then 5+ 1 =6, then 5+ 4 =9, then (6 + 9) % 10 = 4, and so on.

Now you can practice quadratic probing.
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There is one problem with quadratic probing: Its probe sequence typically will not visit all slots in the hash table.
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Unfortunately, quadratic probing has the disadvantage that typically not all hash table slots will be on
sequence.

For many hash table sizes, this probe function will cycle through a relatively small number of slots. If all slots on that
cycle happen to be full, this means that the record cannot be inserted at all! A more realistic example is a table with
105 slots. The probe sequence starting from any given slot will only visit 23 other slots in the table. If all 24 of these
slots should happen to be full, even if other slots in the table are empty, then the record cannot be inserted because
the probe sequence will continually hit only those same 24 slots.

Fortunately, it is possible to get good results from quadratic probing at low cost. The right combination of probe
function and table size will visit many slots in the table. In particular, if the hash table size is a prime number and the
probe function is p(K,i) = i2, then at least half the slots in the table will be visited. Thus, if the table is less than half
full, we can be certain that a free slot will be found. Alternatively, if the hash table size is a power of two and the
probe function is p(K,i) = (i* +4)/2, then every slot in the table will be visited by the probe function.

7.7.4. Double Hashing

Both pseudo-random probing and quadratic probing eliminate primary clustering, which is the name given to the the
situation when keys share substantial segments of a probe sequence. If two keys hash to the same home position,
however, then they will always follow the same probe sequence for every collision resolution method that we have
seen so far. The probe sequences generated by pseudo-random and quadratic probing (for example) are entirely a
function of the home position, not the original key value. This is because function p ignores its input parameter K for
these collision resolution methods. If the hash function generates a cluster at a particular home position, then the
cluster remains under nseudo-random and auadratic nroBgima. This nroblem is called secondarv clusterina.
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To avoid secondary clustering, we need to have the probe sequence make use of the original key value in its
decision-making process. A simple technique for doing this is to return to linear probing by a constant step size for
the probe function, but to have that constant be determined by a second hash function, h,. Thus, the probe
sequence would be of the form p(K,:) = i x hy(K). This method is called double hashing.

There are important restrictions on h,. Most importantly, the value returned by h, must never be zero (or M)
because that will immediately lead to an infinite loop as the probe sequence makes no progress. However, a good
implementation of double hashing should also ensure that all of the probe sequence constants are relatively prime
to the table size M. For example, if the hash table size were 100 and the step size for linear probing (as generated
by function h,) were 50, then there would be only one slot on the probe sequence. If instead the hash table size is
101 (a prime number), than any step size less than 101 will visit every slot in the table.

This can be achieved easily. One way is to select M to be a prime number, and have h; return a value in the range
1 <=hy(k) <=M —1. We can do this by using this secondary hash function: hy(k) =1+ (k mod (M —1)). An
alternative is to set M = 2™ for some value m and have h, return an odd value between 1 and 2™. We can get that
result with this secondary hash function: hy (k) = (((k/M) mod (M/2))*2)+ 1.1

= © 0 &

Let's see what happens when we use a hash table of size M = 11 (a prime number), our primary hash fu
simple mod on the table size (as usual), and our secondary hash function is ha(k) = 1 + (k % (M-1)).

{ )

0 1 2 3 4 5 6 7 8 9 10
ha(k) = 1+ (k % (M-1))
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Now we try the alternate second hash function. Use a hash table of size M = 16 (a power of 2), our prii
function is a simple mod on the table size (as usual), and our secondary hash function is hy(k) = (((k/M) % (M
1.

( )

o 12 3 4 5 6 7 8 9 10 11 12 13 14 15
ha(k) = (((k/M) % (M/2)) * 2) + 1
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Now you can try it.

The secondary hash function hy(k) = (((k/M) mod (M/2)) *2)+1 might seem rather mysterious, so let's
break this down. This is being used in the context of two facts: (1) We want the function to return an odd value
that is less than M the hash table size, and (2) we are using a hash table of size M = 2™, which means that
taking the mod of size M is using the bottom m bits of the key value. OK, since h; is multiplying something by 2
and adding 1, we guarentee that it is an odd number. Now, ((X mod (M/2)) % 2) + 1 must be in the range 1 and
M — 1 (if you need to, play around with this on paper to convince yourself that this is true). This is exactly what
we want. The last piece of the puzzle is the first part k/M. That is not strictly necessary. But remember that
since the table size is M = 2™ _this is the same as giffina the kev value riaht hv m. bits. In other words. we are
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not using the bottom m bits to decide on the second hash function value, which is especially a good thing if we
used the bottom m bits to decide on the first hash function value! In other words, we really do not want the
value of the step sized used by the linear probing to be fixed to the slot in the hash table that we chose. So we
are using the next m bits of the key value instead. Note that this would only be a good idea if we have keys in a
large enough key range, that is, we want plenty of use of those second m bits in the key range. This will be true
if the max key value uses at least 2m bits, meaning that the max key value should be at least the square of the
hash table size. This is not a problem for typical hashing applications.
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07.08 Analysis of Closed Hashing

Due No Due Date Points 1 Submitting an external tool

07.08 Analysis of Closed Hashing

7.8. Analysis of Closed Hashing

7.8.1. Analysis of Closed Hashing

How efficient is hashing? We can measure hashing performance in terms of the number of record accesses
required when performing an operation. The primary operations of concern are insertion, deletion, and search. It is
useful to distinguish between successful and unsuccessful searches. Before a record can be deleted, it must be
found. Thus, the number of accesses required to delete a record is equivalent to the number required to
successfully search for it. To insert a record, an empty slot along the record’s probe sequence must be found. This is
equivalent to an unsuccessful search for the record (recall that a successful search for the record during insertion
should generate an error because two records with the same key are not allowed to be stored in the table).

When the hash table is empty, the first record inserted will always find its home position free. Thus, it will require
only one record access to find a free slot. If all records are stored in their home positions, then successful searches
will also require only one record access. As the table begins to fill up, the probability that a record can be inserted
into its home position decreases. If a record hashes to an occupied slot, then the collision resolution policy must
locate another slot in which to store it. Finding records not stored in their home position also requires additional
record accesses as the record is searched for along its probe sequence. As the table fills up, more and more
records are likely to be located ever further from their home positions.

From this discussion, we see that the expected cost of hashing is a function of how full the table is. Define the load
factor for the table as o« = N/M, where N is the number of records currently in the table.

An estimate of the expected cost for an insertion (or an unsuccessful search) can be derived analytically as a
function of « in the case where we assume that the probe sequence follows a random permutation of the slots in the
hash table. Assuming that every slot in the table has equal probability of being the home slot for the next record, the
probability of finding the home position occupied is «. The probability of finding both the home position occupied and
the next slot on the probe sequence occupied is (N(N —1))/(M(M —1)). The probability of ¢ collisions is
(N(N—-1)...(N—i+1))/(M(M—1)...(M—i+1)). If N and M are large, then this is approximately (N/M). The
expected number of probes is one plus the sum over : >= 1 of the probability of i collisions, which is approximately

o0

1+ (N/M) =1/(1 - a).

i=1

The cost for a successful search (or a deletion) has the same cost as originally inserting that record. However, the
expected value for the insertion cost depends on the vagga] of a not at the time of deletion, but rather at the time of



the original insertion. We can derive an estimate of this cost (essentially an average over all the insertion costs) by
integrating from 0O to the current value of «, yielding a result of (1/a)log,1/(1 — ).

It is important to realize that these equations represent the expected cost for operations when using the unrealistic
assumption that the probe sequence is based on a random permutation of the slots in the hash table. We thereby
avoid all the expense that results from a less-than-perfect collision resolution policy. Thus, these costs are lower-
bound estimates in the average case. The true average cost under linear probing is .5(1 + 1/(1 — «)?) for insertions
or unsuccessful searches and .5(1 + 1/(1 — a)) for deletions or successful searches.

5
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Figure 7.8.1: A plot showing the growth rate of the cost for insertion and deletion into a hash table as the
load factor increases.

Figure 7.8.1 shows how the expected number of record accesses grows as a grows. The horizontal axis is the value
for a , the vertical axis is the expected number of accesses to the hash table. Solid lines show the cost for “random”
probing (a theoretical lower bound on the cost), while dashed lines show the cost for linear probing (a relatively poor
collision resolution strategy). The two leftmost lines show the cost for insertion (equivalently, unsuccessful search);
the two rightmost lines show the cost for deletion (equivalently, successful search).

From the figure, you should see that the cost for hashing when the table is not too full is typically close to one record
access. This is extraordinarily efficient, much better than binary search which requires logn record accesses. As «
increases, so does the expected cost. For small values of «, the expected cost is low. It remains below two until the
hash table is about half full. When the table is nearly empty, adding a new record to the table does not increase the
cost of future search operations by much. However, the additional search cost caused by each additional insertion
increases rapidly once the table becomes half full. Based on this analysis, the rule of thumb is to design a hashing
system so that the hash table never gets above about half full, because beyond that point performance will degrade
rapidly. This requires that the implementor have some idea of how many records are likely to be in the table at
maximum loading, and select the table size accordingly. The goal should be to make the table small enough so that
it does not waste a lot of space on the one hand, while making it big enough to keep performance good on the other.
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07.09 Deletion

Due No Due Date Points 2 Submitting an external tool

07.09 Deletion

7.9. Deletion

7.9.1. Deletion

When deleting records from a hash table, there are two important considerations.

1. Deleting a record must not hinder later searches. In other words, the search process must still pass through the
newly emptied slot to reach records whose probe sequence passed through this slot. Thus, the delete process
cannot simply mark the slot as empty, because this will isolate records further down the probe sequence.

2. We do not want to make positions in the hash table unusable because of deletion. The freed slot should be
available to a future insertion.

Both of these problems can be resolved by placing a special mark in place of the deleted record, called a
tombstone. The tombstone indicates that a record once occupied the slot but does so no longer. If a tombstone is
encountered when searching along a probe sequence, the search procedure continues with the search. When a
tombstone is encountered during insertion, that slot can be used to store the new record. However, to avoid
inserting duplicate keys, it will still be necessary for the search procedure to follow the probe sequence until a truly
empty position has been found, simply to verify that a duplicate is not in the table. However, the new record would
actually be inserted into the slot of the first tombstone encountered.

= O & &

Let's see an example of the deletion process in action. As usual, our example will use a hash table of size 10,
mod hash function, and collision resolution using simple linear probing.

Here is a practice exercise.
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[Reset Model Answerj Q [

Instructions:

The task is to insert and delete the given keys to/from the hashtable. To insert a key, click on the index wher
the key should be inserted. To delete a key, click on all the indices the hashfunction would consider when try
to find the correct position. Use simple mod hashfunction and linear probing for collision resolution.

Score: 0/ 47, Points remaining: 47, Points lost: 0

Delete key 497

@68 248|488|477(617(677 827|577 497]
0o 1 2 3 4 5 6 7 8 9

The use of tombstones allows searches to work correctly and allows reuse of deleted slots. However, after a series
of intermixed insertion and deletion operations, some slots will contain tombstones. This will tend to lengthen the
average distance from a record’s home position to the record itself, beyond where it could be if the tombstones did
not exist. A typical database application will first load a collection of records into the hash table and then progress to
a phase of intermixed insertions and deletions. After the table is loaded with the initial collection of records, the first
few deletions will lengthen the average probe sequence distance for records (it will add tombstones). Over time, the
average distance will reach an equilibrium point because insertions will tend to decrease the average distance by
filling in tombstone slots. For example, after initially loading records into the database, the average path distance
might be 1.2 (i.e., an average of 0.2 accesses per search beyond the home position will be required). After a series
of insertions and deletions, this average distance might increase to 1.6 due to tombstones. This seems like a small
increase, but it is three times longer on average beyond the home position than before deletions.

Two possible solutions to this problem are

1. Do a local reorganization upon deletion to try to shorten the average path length. For example, after deleting a
key, continue to follow the probe sequence of that key and swap records further down the probe sequence into
the slot of the recently deleted record (being careful not to remove any key from its probe sequence). This will
not work for all collision resolution policies.

2. Periodically rehash the table by reinserting all records into a new hash table. Not only will this remove the
tombstones, but it also provides an opportunity to place the most frequently accessed records into their home
positions.

7.9.2. Hashing Deletion Summary Questions

Now here are some practice questions.
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Congratulations! You have reached the end of the hashing tutorial. In summary, a properly tuned hashing system
will return records with an average cost of less than two record accesses. This makes it the most effective way
known to store a database of records to support exact-match queries. Unfortunately, hashing is not effective when
implementing range queries, or answering questions like “Which record in the collection has the smallest key
value?”
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07.10 Hashing Chapter Summary Exercises

Due No Due Date Points 1 Submitting an external tool

07.10 Hashing Chapter Summary Exercises

7.10. Hashing Chapter Summary Exercises

7.10.1. Hashing Review

Here is a complete set of review questions, taken from all of the questions in the modules of this chapter. If anything
goes wrong with one of the questions, or if you think that you are in a series of repeating questions, then just reload
the page.
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Chapter 8:
Functional Programming
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This chapter is authored by John MacCormick and released under the Creative
Commons Attribution-ShareAlike license.
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Functional Programming and Streams

John MacCormick, Dickinson College, August 2021.

1 Some background on functional programming

The design and implementation of programming languages is a large and important subfield of
computer science. In this chapter, we examine functional programming, which is one of the most
important ideas within the theory of programming languages. Programming languages are often
described as belonging to various categories or paradigms. Examples of these programming language
paradigms include imperative languages, functional languages, and logic programming languages. Most
modern languages include features from multiple paradigms. For example, Java and Python were
designed primarily as imperative languages, but they include many aspects of functional programming.
Examples of languages that were designed as functional languages include Lisp, F#, and Haskell.

In this chapter, we first examine the most fundamental idea in functional programming: lambda
expressions. Then, we see how lambda expressions can be used in Java’s Stream API to process data sets
efficiently and elegantly.

1.1 A note on the use of Java and Python in this chapter

Although Java and Python are not particularly good examples of functional programming languages, the
examples in this chapter use only Java and Python. It would take us too far afield to study a more purely
functional language. If some of the Java examples seem a little awkward, keep in mind that we are
deliberately adopting a compromise between understanding the ideas of functional programming and
exploiting our existing familiarity with Java. If you are not familiar with Python, do not be concerned. It is
easier to demonstrate some of functional programming ideas in Python, compared to Java. Therefore,
we use some initial examples from Python. But it will be sufficient to understand the Java examples
without having a detailed understanding of the Python examples.

2 Lambda expressions

In the rest of this chapter, the word function usually refers to a subroutine in a programming language
that can accept parameters and return values. Different programming languages refer to functions using
different terminology. In Java, for example, functions are called methods. In Python, functions are simply
called functions.

A key aspect of functional programming languages is that they treat functions the same as other data
types. This is often described using the phrases “functions are first-class citizens” or “functions are first-
class objects.” The most important consequence of this first-class status is that in a functional language,
a function can be a parameter in another function.
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2.1 Functions as parameters in Python
It is particularly easy to demonstrate this in Python:

def add5(x):
return x + 5

def multBy3IfPositive(x):
if x > @:
return 3 * x
else:
return O

def applyToSeven(f):
return £(7)

def applyToMinusNine(f):
return f(-9)

Here, the functions applyToSeven and applyToMinusNine both accept a single parameter which is
expected to be a function. For example, we can use add5 as the parameter for applyToSeven:

>>> applyToSeven(add5)
12

And of course, we can get a different result if we send in a different function as the parameter:

>>> applyToSeven(multBy3IfPositive)
21

Example problem 1.
Check your understanding by working out the results of the following two function calls:

>>> applyToMinusNine(add5)
>>> applyToMinusNine(multBy3IfPositive)

Solutions to all example problems are given at the end of this chapter.

2.2 Functions as parameters in Java

In Java, it is not quite so easy to pass a function as a parameter, when compared to Python. The Java
code below is the simplest equivalent of the above Python code. As you will see, it is comparatively ugly.
It relies on Java interfaces to simulate the ability to pass a function as a parameter. In this example, we
import the Function<T, R> interface from java.util.function, which isthe Java package that
supports functional programming. The Function<T, R> interface represents a function that accepts a
single parameter of type T and returns a value of type R. Because the add5 function accepts a single
integer parameter and returns an integer, we can create the effect of functional programming with

add5 by creating an Add5 class that implements the Function<Integer, Integer> interface. Inthe
main() method below, we create an instance of the Add5 class. The name of that instance is add5, and
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we can pass this instance, which truly is a Java object, as a parameter to the applyToSeven() and
applyToMinusNine () methods.

import java.util.function.Function;
public class FunctionParameterDemo {

public static class Add5 implements Function<Integer, Integer> {
public Integer apply(Integer x) {
return x + 5;
}

}

public static class MultBy3IfPositive
implements Function<Integer, Integer> {
public Integer apply(Integer x) {

if (x > 9) {

return 3 * x;
} else {

return 0;
¥

}

public static Integer applyToSeven(Function<Integer, Integer> f) {
return f.apply(7);
}

public static Integer applyToMinusNine(Function<Integer, Integer> f) {
return f.apply(-9);

}

public static void main(String[] args) {
Add5 add5 = new Add5();
MultBy3IfPositive multBy3IfPositive = new MultBy3IfPositive();
int vall = applyToSeven(add5); // vall = 12
int val2 = applyToSeven(multBy3IfPositive); // val2 = 21

Example problem 2.

Determine the value of the following two method calls, assuming they were inserted at the end
of the above main() method:

applyToMinusNine(add5)
applyToMinusNine(multBy3IfPositive)
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2.3 Functional interfaces and lambda expressions in Java

Notice that the interface implemented by add5 and multBy3IfPositive has the following special
property: it has only a single abstract method. The name of this method is apply (). In Java, an
interface with exactly one abstract method is called a functional interface. As we will see later,
functional interfaces are important because they can be implemented efficiently and elegantly using
lambda expressions. Lambda expressions are a shorthand notation for functional interfaces that allow us
to avoid using the ugly style of Java functional programming above. To see lambda expressions in action,
we will first return to Python.

2.4  Named and anonymous values

In any computer program written in any programming language, some of the values will typically be
named whereas other values will be anonymous. For example, here are two different ways of printing
out the square root of 5 in Python:

print(math.sqrt(5)) # anonymous

X =5
print(math.sqrt(x)) # named

In the first call to sqrt (), the value 5 is anonymous because it is not referred to using the name of a
variable. In the second call to sqrt (), the value 5 is referred to using the name x.

2.5 Thelambda keyword in Python

Recall that in functional programming, we can use functions as parameters. Therefore, it should be
possible to use the same two techniques when sending a function as a parameter: we can use either a
named function, or an anonymous function. We have already seen how to do this using named
functions. One of the examples from earlier is repeated here for concreteness:

>>> applyToSeven(add5)

This sends the named function add5 as a parameter to an invocation of the function applyToSeven().
But how can we do this using an anonymous function? In Python, we can create an anonymous function
using the keyword 1ambda, as in the following example.

>>> applyToSeven(lambda x: x+5)

So, a lambda expression is just a way of describing a function without giving it a name. The Python
snippet “lambda x: x+5” means “the function that takes a parameter x and returns x+5.” It would
perhaps be less confusing if Lambda were called something else like anonFunction, but there are
good historical and theoretical reasons for adopting the keyword 1ambda. “Lambda” is the name of the
Greek letter A. In the 1930s, the mathematician Alonzo Church used the Greek letter A as the main
symbol in describing a framework for computing with functions—a framework that we now call the
lambda calculus. The lambda calculus lies at the heart of functional programming and the theory of
computation, but it would take us too far afield to study that connection here.
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To summarize: in Python, a lambda expression defines an anonymous function. There is never any need
to be confused by lambda expressions. If you see some code that contains a confusing lambda
expression, you can simply rewrite it by first creating a named function that performs the effect of the
lambda expression, then substituting the new name for the lambda expression. For example, the Python
snippet

performStrangeAction("nonsense", \
lambda apple, banana, grape: apple + banana.gimble(2*grape))

can be rewritten as

def weirdFunction(apple, banana, grape):
return apple + banana.gimble(2*grape)

performStrangeAction("nonsense", weirdFunction)

The above example also shows how lambda expressions in Python can describe functions with multiple
parameters.

Example problem 3.
Assuming the definitions given earlier, what is the output of the following snippets of Python?

applyToSeven(lambda potato: potato%4 + potato*potato)
applyToMinusNine(lambda oak: math.factorial(oak+12) * oak)

2.6 Lambda expressions in Java

In Java, lambda expressions do not use the keyword 1ambda. Instead, they employ the arrow notation
“->"” immediately after the function parameters. For example, the equivalent of the Python snippet
“lambda x: x+45”inlJavais “x -> x+5”.In both cases, the meaning of the lambda expression is
approximately “the function that receives a parameter x and returns x+5.” The true meaning of a Java
lambda expression is more complex, but we won’t describe the details here. It is enough to know that
the Java lambda expression uses the functional interfaces mentioned earlier, creating an anonymous
class and an anonymous instance so that the desired functional programming effect is achieved.

We can rewrite our earlier Java examples using lambda expressions. The declarations of
applyToSeven() and applyToMinusNine() remain the same, but they are repeated here for
convenience:

public static Integer applyToSeven(Function<Integer, Integer> f) {
return f.apply(7);

}

public static Integer applyToMinusNine(Function<Integer, Integer> f) {
return f.apply(-9);
}
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The rest of the code is much more compact because there is no need to declare any classes that
implement functional interfaces. Our main method can instead be

public static void main(String[] args) {
int val3 = applyToSeven(x -> x + 5); // val3 = 12
int val4 = applyToSeven(x -> {

if (x > 0) {

return 3 * x;
} else {

return 0;
}

}); // vald = 21

Note the use of a lambda expression that spans multiple lines and contains multiple blocks of code. In
practice, lambda expressions are usually kept short and simple, but they can be as complex as desired.

Example problem 4.

Determine the values of the following two method calls, assuming they were inserted at the end
of the above main() method:

int val5 = applyToMinusNine(x -> (x + 1) * (x + 2));
int valé = applyToMinusNine(z -> {
if (z > 10) {
return 100;
} else if (z < -100) {
return -100;
} else {
return z * 10;
}

})s

Lambda expressions in Java can also have multiple parameters. This is achieved by listing the parameters
inside parentheses before the “->” symbol. For example, the lambda expression (x, y) -> x*x +
2*y could represent a method () such as the following.

public int f(int x, int y) {
return x*x + 2*y;

}

Example problem 5.

Write the mathematical function g(u, v, w) = Vu? + v? + w? as a Java lambda expression.
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3 The Java Stream API

In Java, Stream<T> is an interface for performing operations on sequences of objects of type T. There
are also specialized streams for performing operations on sequences of some primitive types:
IntStreamfor int values, LongStreamfor long values, and DoubleStream for double values.

Common operations used on Streams include count (), filter(), map(), mapToInt(),
foreach(), and reduce(). IntStream, LongStream, and DoubleStream also have the operation
sum( ). We study only these seven operations. The Java APl documentation lists other available
operations.

Each operation is defined as either an intermediate operation or a terminal operation. The seven
common operations that we will study are classified as follows.

e Intermediate operations: filter (), map(), mapToInt().
e Terminal operations: count (), foreach(), reduce(), sum().

To perform a computation on a Stream, we can apply zero or more intermediate operations in
sequence, followed by a single terminal operation. For example, a computation might consist of the
following sequence of operations: filter(), filter(), map(), filter(), count().

3.1 Creating a Stream
There are numerous ways to create a Stream in Java. Several of these approaches are shown in the
following code snippet.

// Approach 1: Create directly from an array via Stream.of()
String[] array = { "bat", "cat", "bird", "mad", "catch", "ditch" };
Stream<String> streaml = Stream.of(array);

// Approach 2: Create directly from multiple arguments via

// String.of()

Stream<String> stream2 = Stream.of("bat", "cat", "bird", "mad",
"catch", "ditch");

// Approach 3: Convert any Java Collection using the collection's

// stream() method

List<String> list = Arrays.asList("bat",
"catch", "ditch");

Stream<String> stream3 = list.stream();

cat", "bird", "mad",

// Approach 4: Stream from a file using Files.lines
Stream<String> stream4 = Files.lines(Paths.get("data/words.txt"));

// Approach 5: Use range() or rangeClosed()
IntStream rangel = IntStream.range(5, 10); // 5,6,7,8,9
IntStream range2 = IntStream.rangeClosed(5, 10); // 5,6,7,8,9,10

Example problem 6.
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(i) Write some code that would create a stream containing the following sequence as Double
objects: 23.4, 69.7, -25.88, 31.3363.

(ii) Repeat part (i), this time creating a stream containing primitive double values.
(iii) Write code creating a stream consisting of integers from 100 to 200 inclusive.

The next seven sections introduce each of our seven common operations, while also gradually building
our understanding of how to combine the operations into more interesting stream computations.

3.2 Stream operations
We now examine seven stream operations in detail.

3.2.1 count()
The count () operation returns the number of elements in a stream.

Stream<String> stream = Stream.of("bat", "cat", "bird”);
long numElements = stream.count(); // numElements = 3

Example problem 7.

Write a snippet of code that uses the Stream API to count the number of lines in a file called
“GreatGatsby.txt”.

3.2.2 sum()

The sum() operation returns the sum of the elements in a stream. It can only be applied to the
specialized numeric streams IntStream, LongStream, and DoubleStream, as in the following
example.

DoubleStream stream = DoubleStream.of(1.5, 2.4, -0.1);
double total = stream.sum(); // total = 3.8

Example problem 8.

Write a snippet of code that uses the Stream API to add the integers from 27 to 159 inclusive.
Hint: IntStream.range() or IntStream.rangeClosed() make this very easy.

3.2.3 filter()

The filter () operation applies a Boolean test function to every element in the input stream.
Elements that fail the test (i.e. return false) are discarded, whereas elements that pass the test

(i.e. return true) enter the output stream to be processed by the next operation in the computation.
This is our first example of using lambda expressions with Streams, because the Boolean test function
can be described with a lambda expression. Consider the following example.

Stream<String> stream = Stream.of("bat", "cat", "bird", "mad",
"catch", "ditch");
Stream<String> newStream = stream.filter(word -> word.startsWith("ca"));
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Here, streamis the input to the computation. It is a Stream<String> containing the elements "bat",
"cat", "bird", "mad", "catch", "ditch". The output of the computation is newStream, which also has the
datatype Stream<String>. But newStream contains only the elements beginning with “ca”, so it
consists of the two elements “cat” and “catch”.

If the lambda expression in the snippet above is confusing, remember that we can always rewrite
lambda expressions using named functions. Let’s do this now for the above lambda expression,
word -> word.startsWith("ca").

The first step is to determine what functional interface this lambda expression is an instance of. To do
that, we consult the documentation of the filter () method in the Stream interface. In the
documentation, the signature of the filter () method is given as

Stream<T> filter(Predicate<? super T> predicate)

Until we have more familiarity with streams and lambda expressions, it will be best to ignore the type
wildcard (“?”). So let’s think of the parameter as having datatype Predicate<T>. We again consult the
official Java documentation, this time looking up Predicate<T>. As expected, it is a functional
interface, which means it has exactly one abstract method. The signature of this method is boolean
test(T t).Notethatour filter() method is being applied to a stream of strings,
Stream<String>. So for this example, the type parameter T has value String. Therefore, to rewrite
the lambda expressionword -> word.startsWith("ca"), we need to implement the interface
Predicate<String>. Specifically, we will need to implement the method test(String t) sothat
its parameter is called word and its return value is word. startsWith("ca"). Putting this together,
we obtain the following code.

class StartsWithCA implements Predicate<String> {
public boolean test(String word) {
return word.startsWith("ca");
}
}
StartsWithCA startsWithCA = new StartsWithCA();
Stream<String> stream = Stream.of("bat", "cat", "bird", "mad",

"catch", "ditch");
Stream<String> newstream = stream.filter(startsWithCA);

Once we have obtained the new, filtered stream newstream, we can do further computations on it. For
example, we can count the elements:

Stream<String> newstream = stream.filter(word -> word.startsWith("ca"));
long numStartWithCA = newstream.count(); // numStartWithCA = 2

However, this is usually written in a more compact form. Instead of defining a new local variable for
each stream created by the intermediate operations, we can immediately apply the next operation via a
method call:
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long numStartWithCA = stream
.filter(word -> word.startsWith("ca"))
.count(); // numStartWithCA = 2

This is equivalent to the previous snippet, but it is more compact and more readable once you get used
to the syntax. Each operation in the computation is written as a method call beginning with “.” and
placed on a new line for readability.

Example problem 9.

Building on your solution to the previous example problem, write a snippet of code that uses the
Stream API to add the odd integers from 27 to 159 inclusive.

3.2.4 foreach()

The foreach () operation applies an action to every element in the input stream. It is a terminal
operation and should only be used for producing output at the end of a computation. Never use the
foreach() operation to process elements in an intermediate operation. For our purposes, the only use
of foreach() is to print out the elements of a stream using methods such as System.out.print()
and System.out.println(), asin the following example.

Stream<String> stream = Stream.of("apple"”, "banana", "bagel");
stream.forEach(word -> System.out.println(word));

This snippet produces the output

apple
banana
bagel

We have already discussed how it is always possible to rewrite a lambda expression as a named instance
of a functional interface. There is yet another way to rewrite certain simple lambda expressions. If the
lambda expression does nothing except invoke a method that already has a name, you can refer directly
to the method using Java’s method reference operator, “: :”. For example, the snippet

System.out: :printlnis equivalent to the lambda expression x -> System.out.println(x).
Method references are often used with the foreach () operation, as in the following example (which is
equivalent to the previous example).

Stream<String> stream5 = Stream.of("apple"”, "banana", "bagel");
stream5.forEach(System.out: :println);

Example problem 10.

Write a snippet of code that uses the Stream API to print the integers from 27 to 159 inclusive
on separate lines.
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3.2.5 map()

The map () operation is used to apply a method to each element of the input stream. In mathematical
notation, the result of mapping the function f onto the sequence x;, X3, x3, Xy, ... is

f(x1), f(x2), f(x3), f(x4), ... . The following is an example using Java streams.

Stream<String> stream = Stream.of("apple", "banana", "bagel");
stream
.map(word -> word.toUpperCase() + "***")
.forEach(System.out::print);

The output is

APPLE***BANANA***BAGEL***

Example problem 11.

Suppose a file info.txt stores a nonempty string on each line. Write a snippet of code that
uses the Stream API to print the first character of each line in the file on a separate line.

3.2.6 mapTolnt()
The mapToInt() operation is identical to map(), except that the mapped function must return an int,
and therefore the resulting stream is an IntStream. For example, we can find the location of the letter

o, n

e” in each element of a Stream<String> as follows.

Stream<String> stream = Stream.of("apple", "banana", "bagel");
stream
.mapToInt(word -> word.indexOf('e"))
.forEach(System.out: :println);

The output is

Example problem 12.

Write a snippet of code that uses the Stream API to print the length each line in the file
info.txt on aseparate line.

3.2.7 reduce()

The reduce () operation is a terminal operation, which is used to combine all the elements of a stream
into a single output. Perhaps this operation would be easier to understand if it were called “combine.”
But the term “reduce” also makes sense, because we are “reducing” an entire stream into a single
output.
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The reduce () operation is a little more elaborate than the others, so we introduce it by way of an
example. For the moment, we abandon streams and go back to processing data in an ordinary array.
Suppose we have an array of strings and we would like to take the first character from each string and
combine these into a single string. For example, the array { "apple”, "banana", "bagel"} will
produce the output “abb”. This can be achieved by the following Java code.

String[] array = { "apple", "banana", "bagel" };
String initialvalue = "";

String resultSoFar = initialValue;

for (String newElement: array) {

resultSoFar = resultSoFar + newElement.charAt(9);

}

The idea behind this algorithm is obvious. We move through the array accumulating any results in the
variable resultSoFar. Each time we process a new element, we combine it with the existing results
(by adding the first character of newElement, in this particular case), producing an updated value for
resultSoFar. We also specify an initial value for the results, which is stored separately for clarity in
the variable initialValue. When the algorithm terminates, the final result can be found in the
accumulator variable resultSoFar

We can refactor the above snippet so that the process of accumulating results is factored out into the
separate method accumulate(), as follows.

public static String accumulate(String resultSoFar, String newElement) {
return resultSoFar + newElement.charAt(Q);
}

public static void main(String[] args) throws IOException {
String[] array2 = { "apple", "banana", "bagel" };
String initialValue = "";
String resultSoFar = initialValue;
for (String newElement : array2) {
resultSoFar = accumulate(resultSoFar, newElement);

}
System.out.println(resultSoFar);

Now we can describe the reduce () streaming operation using the vocabulary from the above example.
The operation has two parameters, which correspond to the initialValue variable and the
accumulate() method. Thus, the reduce(initialvalue, accumulate) streaming operation
applies the accumulate method successively to each element of the stream, using the given initial value
for initialization. The accumulate method is usually specified by a lambda expression.

Returning to our concrete example, the following code shows how to produce a string consisting of the
initial characters of each element in a stream.
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Stream<String> stream = Stream.of("apple", "banana", "bagel");
String firstLetters =
stream.reduce(
", // first parameter is the initial value, an empty String
(resultSoFar, newElement) -> resultSoFar + newElement.charAt(9)
// second parameter (above) is the €accumulate’ function,
// written as a lambda expression with two parameters

)5

Note how the lambda expression representing the accumulator function has two parameters, just like
the accumulate() method in the earlier example above:

(resultSoFar, newElement) -> resultSoFar + newElement.charAt(9)

Note that we have studied the two-parameter form of the reduce () operation. There is also a one-
parameter form and a three-parameter form, but we do not study those here.

Example problem 13.

Suppose a file numbers.txt stores a number written in decimal notation on each line. Write a
snippet of code that uses the Stream API to compute the sum of the numbers in the file using
the java.math.BigDecimal class, which guarantees that no precision will be lost when
dealing with decimal numbers. (It would be important to use this approach when performing a
financial calculation, for example.)

3.3 Parallel streams

One advantage of the Java Stream APl is that computations can be parallelized with essentially no effort.
Every stream has an internal setting that determines whether it operates in a sequential fashion or a
parallel fashion. If a stream is set to operate in parallel, the Java stream library will attempt to split the
stream into chunks which are fed into separate threads running simultaneously. Certain computations
benefit greatly from this parallelism and will complete more quickly. Indeed, if there are N CPU cores
available then the computation could in principle be sped up by a factor of N (or even more if we take
hyperthreading into account). On the other hand, some computations cannot benefit from
parallelization. When operating in parallel mode, such a computation may in fact run more slowly than
its sequential version, due to the overhead of setting up the parallel streams.

Any stream can be converted to a parallel stream by applying the parallel() operation to it. A stream
can be converted to sequential mode by applying the sequential () operation. The following is an
example of code that benefits greatly from employing parallelism when the array values|[ ] is very
large. We assume a Boolean method isPrime() is available, which returns true if its argument is a
prime number.
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int[] values = ..

numPrimes = IntStream.of(values)
.parallel()
.filter(n -> isPrime(n))
.count();

To perform the same computation sequentially, replace the “parallel()” with “sequential()”. The
program ParallelPrimesDemo. java (see listing below) compares the two approaches empirically.

Example problem 14.

Run the program ParallelPrimesDemo. java (see listing below) on your own computer and
determine the average speed-up factor when the computation is done in parallel. How does this
compare to the number of CPU cores and/or hyperthreads available on your computer?

3.4 Program listing of ParallelPrimesDemo.java

import java.util.Random;
import java.util.stream.IntStream;

/**
* This class provides a demonstration of the speed-up that can be obtained
* by using parallel streams rather than sequential streams.

*/

public class ParallelPrimesDemo {

// A deliberately inefficient way of determining whether an integer
// n>=2 is prime. We just want to perform a computationally intensive
// task to demonstrate the benefits of parallelism.
private static boolean isPrime(int n) {
for (int 1 = 2; i < n; i++) {
if (n % i ==20) {
return false;
}
}

return true;

}

public static void main(String[] args) {
// Step 1. Create a large array of random integers. We ensure that
// each integer is greater than or equal to 2, so that it makes
// sense to ask whether the integer is prime.
Random random = new Random();
final int numValues = 2000000;
final int maxValue = 10000;
int[] values = new int[numValues];
for (int i = @; i < values.length; i++) {
values[i] = 2 + random.nextInt(maxValue - 2);

}
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// We repeat the remaining steps several times so that we can check
// if the timing results are reliable.

int numRepetitions = 5;

for (int repetition = 0; repetition < numRepetitions; repetition++) {

// Step 2. Use a sequential stream to determine how many of the
// random integers are prime, and record the time taken.
long numPrimesl, numPrimes2;
long startTime, endTime;
startTime = System.nanoTime();
numPrimesl = IntStream.of(values).sequential()
.filter(n -> isPrime(n)).count();

endTime = System.nanoTime();
long sequentialDuration = (endTime - startTime)

/ 1000000; // milliseconds

// Step 3. The same as the previous step, but with a parallel
// stream.
startTime = System.nanoTime();
numPrimes2 = IntStream.of(values).parallel()
.filter(n -> isPrime(n)).count();

endTime = System.nanoTime();
long parallelDuration = (endTime - startTime)

/ 1000000; // milliseconds

// The answers had better be the same!
assert numPrimesl == numPrimes2;

// Step 4. Print the timing results.
double speedup = (double) sequentialDuration
/ parallelDuration;
System.out.format(
"sequential %dms, parallel %dms, speedup factor %2.2f\n",
sequentialDuration, parallelDuration, speedup);

4 Solutions to example problems

Example problem 1.

applyToMinusNine(add5) » -4
applyToMinusNine(multBy3IfPositive) > ©

Example problem 2.

applyToMinusNine(add5) » -4
applyToMinusNine(multBy3IfPositive) > ©
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Example problem 3.

applyToSeven(lambda potato: potato%4 + potato*potato) - 52
applyToMinusNine(lambda oak: math.factorial(oak+12) * oak) -» -54

Example problem 4.

val5 = 56
valé = -90

Example problem 5.

(u,v,w)->Math.sgrt(u*u + v*v + w*w)

Example problem 6.
There are many ways to achieve this. Here are some examples:
(i) Stream<Double> doubleObjects = Stream.of(23.4, 69.7, -25.88, 31.3363);

(i) DoubleStream doublePrimitives = DoubleStream.of(23.4, 69.7, -25.88,
31.3363);

(iii) Either of the following approaches would work here:
IntStream rangel = IntStream.range(100, 201);
IntStream range2 = IntStream.rangeClosed(100, 200);

Example problem 7.

Stream<String> gatsby = Files.lines(Paths.get("GreatGatsby.txt"));
long numLines = gatsby.count();

Example problem 8.

int sum27to0159 = IntStream.rangeClosed(27, 159).sum();

Example problem 9.

int sum0dd27tol159 = IntStream.rangeClosed(27, 159)
filter(x -> x % 2 == 1)
.sum();

Example problem 10.

IntStream.rangeClosed(27, 159).forEach(System.out::println);

Example problem 11.

Stream<String> info = Files.lines(Paths.get("info.txt"));
info.map(s->s.substring(@, 1)).forEach(System.out::println);
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Example problem 12.

Stream<String> info = Files.lines(Paths.get("info.txt"));
info.mapToInt(s->s.length()).forEach(System.out::println);

Example problem 13.

Stream<String> numbers = Files.lines(Paths.get("numbers.txt"));
BigDecimal sum = numbers

.map(s -> new BigDecimal(s))

.reduce(new BigDecimal(®), (tot, val) -> tot.add(val));
System.out.println(sum);

Example problem 14.
The following results were obtained on an Intel Core i5-8350U Processor:

sequential 2907ms, parallel 634ms, speedup factor 4.59
sequential 279@ms, parallel 639ms, speedup factor 4.37
sequential 2714ms, parallel 651ms, speedup factor 4.17
sequential 2729ms, parallel 651ms, speedup factor 4.19
sequential 2731ms, parallel 646ms, speedup factor 4.23

This processor is described by Intel as having 4 cores and 8 threads. One plausible interpretation of the
above speedup factors is that each of the four cores was able to perform part of the processing
simultaneously, and a small additional boost was provided by the hyperthreading technology on this
processor.
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Chapter 9: Graphs

OpenDSA License

OpenDSA is Copyright © 2013-2016 by Ville Karavirta and Cliff Shaffer.
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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09.01 Graphs Chapter Introduction

9.1. Graphs Chapter Introduction

9.1.1. Graph Terminology and Implementation

Graphs provide the ultimate in data structure flexibility. A graph consists of a set of nodes, and a set of edges where
an edge connects two nodes. Trees and lists can be viewed as special cases of graphs.

Graphs are used to model both real-world systems and abstract problems, and are the data structure of choice in
many applications. Here is a small sampling of the types of problems that graphs are routinely used for.

1. Modeling connectivity in computer and communications networks.

2. Representing an abstract map as a set of locations with distances between locations. This can be used to
compute shortest routes between locations such as in a GPS routefinder.

3. Modeling flow capacities in transportation networks to find which links create the bottlenecks.

4. Finding a path from a starting condition to a goal condition. This is a common way to model problems in artificial
intelligence applications and computerized game players.

5. Modeling computer algorithms, to show transitions from one program state to another.
6. Finding an acceptable order for finishing subtasks in a complex activity, such as constructing large buildings.
7. Modeling relationships such as family trees, business or military organizations, and scientific taxonomies.

The rest of this module covers some basic graph terminology. The following modules will describe fundamental
representations for graphs, provide a reference implementation, and cover core graph algorithms including
traversal, topological sort, shortest paths algorithms, and algorithms to find the minimal-cost spanning tree. Besides
being useful and interesting in their own right, these algorithms illustrate the use of many other data structures
presented throughout the course.

A graph G = (V,E) consists of a set of vertices V and a set of edges E, such that each edge in E is a connection
between a pair of vertices in V. 1 The number of vertices is written | V|, and the number of edges is written |E|. |E|
can range from zero to a maximum of |V|* — |V].

1
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them, or that a vertex can have an edge to itself. However, the applications discussed here do not require either
of these special cases. To simplify our graph API, we will assume that there are no dupicate edges, and no
edges that connect a node to itself.

A graph whose edges are not directed is called an undirected graph, as shown in part (a) of the following figure. A
graph with edges directed from one vertex to another (as in (b)) is called a directed graph or digraph. A graph with
labels associated with its vertices (as in (c)) is called a labeled graph. Associated with each edge may be a cost or
weight. A graph whose edges have weights (as in (c)) is said to be a weighted graph.

(a) undirected graph (b) directed graph (c) labeled

Figure 9.1.1: Some types of graphs.

An edge connecting Vertices o and b is written (a,b). Such an edge is said to be incident with Vertices o and 5. The
two vertices are said to be adjacent. If the edge is directed from ¢ to b, then we say that ¢ is adjacent to 5, and b is
adjacent from . The degree of a vertex is the number of edges it is incident with. For example, Vertex e below has
a degree of three.

In a directed graph, the out degree for a vertex is the number of neighbors adjacent from it (or the number of edges
going out from it), while the in degree is the number of neighbors adjacent to it (or the number of edges coming in
to it). In (c) above, the in degree of Vertex 1 is two, and its out degree is one.

(a) Vertices a and b are neighbors (b) The red edge is incident with vertices a

A sequence of vertices vy,vs,...,v, forms a path of length n — 1 if there exist edges from v; to v;;; for 1 <i <n. A
path is a simple path if all vertices on the path are distinct. The length of a path is the number of edges it contains.
A cycle is a path of length three or more that connects some vertex v; to itself. A cycle is a simple cycle if the path
is simple, except for the first and last vertices being the same.
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(a) A simple path from 0 to 3. (b) Path 0, 1, 3, 2, 4, 1 is not simple (c) Simple cycle *

An undirected graph is a connected graph if there is at least one path from any vertex to any other. The maximally
connected subgraphs of an undirected graph are called connected components. For example, this figure shows
an undirected graph with three connected components.

P11

A graph with relatively few edges is called a sparse graph, while a graph with many edges is called a dense
graph. A graph containing all possible edges is said to be a complete graph. A subgraph S is formed from graph
G by selecting a subset V, of G’s vertices and a subset E, of G ‘s edges such that for every edge e € E,, both
vertices of e are in V. Any subgraph of V' where all vertices in the graph connect to all other vertices in the
subgraph is called a clique.

) (1) (1)
\/
L
(®

(a) A graph with relatively few edges is called a sparse graph. (b) A graph with many edges is called a den

(c) A complete graph has edges connecting every pair of nodes. (d) A clique is a subset of V where all vertice
have edges to all other vertices in the subset
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A graph without cycles is called an acyclic graph. Thus, a directed graph without cycles is called a directed
acyclic graph or DAG.

0 >@ OO

(a) Directed Acyclic Graph (b) Acyclic Graph

A free tree is a connected, undirected graph with no simple cycles. An equivalent definition is that a free tree is
connected and has |V| — 1 edges.

9.1.1.1. Graph Representations

There are two commonly used methods for representing graphs. The adjacency matrix for a graph is a |V| x |V]|
array. We typically label the vertices from v, through Vjy|-1- Row i of the adjacency matrix contains entries for Vertex
v;- Column j in row i is marked if there is an edge from v; to v; and is not marked otherwise. The space
requirements for the adjacency matrix are (| V|?).

The second common representation for graphs is the adjacency list. The adjacency list is an array of linked lists.
The array is |V| items long, with position i storing a pointer to the linked list of edges for Vertex v;. This linked list
represents the edges by the vertices that are adjacent to Vertex v;.

Here is an example of the two representations on a directed graph. The entry for Vertex 0 stores 1 and 4 because
there are two edges in the graph leaving Vertex 0, with one going to Vertex 1 and one going to Vertex 4. The list for
Vertex 2 stores an entry for Vertex 4 because there is an edge from Vertex 2 to Vertex 4, but no entry for Vertex 3
because this edge comes into Vertex 2 rather than going out.
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Figure 9.1.7: Representing a directed graph.

Both the adjacency matrix and the adjacency list can be used to store directed or undirected graphs. Each edge of
an undirected graph connecting Vertices u and v is represented by two directed edges: one from « to v and one from
v to u. Here is an example of the two representations on an undirected graph. We see that there are twice as many
edge entries in both the adjacency matrix and the adjacency list. For example, for the undirected graph, the list for
Vertex 2 stores an entry for both Vertex 3 and Vertex 4.

0 1 2 3 4 of 2 e
o 1 1
1] >+
o1 1| 1

N 111 2| >3
w 1| 1 3| {1
[0t

Adjacency Matrix Adjacency List

Figure 9.1.8: Representing an undirected graph.

The storage requirements for the adjacency list depend on both the number of edges and the number of vertices in
the graph. There must be an array entry for each vertex (even if the vertex is not adjacent to any other vertex and
thus has no elements on its linked list), and each edge must appear on one of the lists. Thus, the cost is
o(V| + [El).

Sometimes we want to store weights or distances with each each edge, such as in Figure 9.1.1 (c). This is easy with
the adjacency matrix, where we will just store values for the weights in the matrix. In Figures 9.1.7 and 9.1.8 we
store a value of “1” at each position just to show that the edge exists. That could have been done using a single bit,
but since bit manipulation is typically complicated in most programming languages, an implementation might store a
byte or an integer at each matrix position. For a weighted graph, we would need to store at each position in the
matrix enough space to represent the weight, which might typically be an integer.

The adjacency list needs to explicitly store a weight with each edge. In the adjacency list shown below, each linked
list node is shown storing two values. The first is the index for the neighbor at the end of the associated edge. The
second is the value for the weight. As with the adjacency matrix, this value requires space to represent, typically an
integer.

0 1 2 3 4 0__)

3 4
@\4 ° 1[ F-@E])
3 (4) 7 o362 1 2| >4}




o 7 3| {217
@ ° @ IN 1 41 1—>{11]]

~—

Adjacency Matrix: Weights Adjacency List: Weigh

Which graph representation is more space efficient depends on the number of edges in the graph. The adjacency
list stores information only for those edges that actually appear in the graph, while the adjacency matrix requires
space for each potential edge, whether it exists or not. However, the adjacency matrix requires no overhead for
pointers, which can be a substantial cost, especially if the only information stored for an edge is one bit to indicate
its existence. As the graph becomes denser, the adjacency matrix becomes relatively more space efficient. Sparse
graphs are likely to have their adjacency list representation be more space efficient.

Example 9.1.1

Assume that a vertex index requires two bytes, a pointer requires four bytes, and an edge weight requires two
bytes. Then, each link node in the adjacency list needs 2 + 2 + 4 = 8 bytes. The adjacency matrix for the directed
graph above requires 2|V?| = 50 bytes while the adjacency list requires 4|V| + 8|E| = 68 bytes. For the undirected
version of the graph above, the adjacency matrix requires the same space as before, while the adjacency list
requires 4|V| + 8|E| = 116 bytes (because there are now 12 edges represented instead of 6).
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The adjacency matrix often requires a higher asymptotic cost for an algorithm than would result if the adjacency list
were used. The reason is that it is common for a graph algorithm to visit each neighbor of each vertex. Using the
adjacency list, only the actual edges connecting a vertex to its neighbors are examined. However, the adjacency
matrix must look at each of its |[V| potential edges, yielding a total cost of ©(|V?|) time when the algorithm might
otherwise require only ©(|V|+ |E|) time. This is a considerable disadvantage when the graph is sparse, but not
when the graph is closer to full.

9.1.2. Graph Terminology Questions
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9.2. Graph Implementations

We next turn to the problem of implementing a general-purpose graph class. There are two traditional approaches
to representing graphs: The adjacency matrix and the adjacency list. In this module we will show actual
implementations for each approach. We will begin with an interface defining an ADT for graphs that a given
implementation must meet.

interface Graph { // Graph class ADT
// Initialize the graph with some number of vertices
void init(int n);

// Return the number of vertices
int nodeCount();

// Return the current number of edges
int edgeCount();

// Get the value of node with index v
Object getValue(int v);

// Set the value of node with index v
void setValue(int v, Object val);

// Adds a new edge from node v to node w with weight wgt
void addEdge(int v, int w, int wgt);

// Get the weight value for an edge
int weight(int v, int w);

// Removes the edge from the graph.
void removeEdge(int v, int w);

// Returns true 1iff the graph has the edge
boolean hasEdge(int v, int w);

// Returns an array containing the indicies of the neighbors of v
int[] neighbors(int v);

This ADT assumes that the number of vertices is fixed when the graph is created, but that edges can be added and
removed. The init method sets (or resets) the number of nodes in the graph, and creates necessary space for the
adjacency matrix or adjacency list.

Vertices are defined by an integer index value. In other words, there is a Vertex 0, Vertex 1, and so on through
Vertex n — 1. We can assume that the graph’s client application stores any additional information of interest about a
given vertex elsewhere, such as a name or application-dependent value. Note that in a language like Java or C++,
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class users’ responsibility to maintain information related to the vertices themselves. The Graph class need have no
knowledge of the type or content of the information associated with a vertex, only the index number for that vertex.

Interface Graph has methods to return the number of vertices and edges (methods n and e, respectively). Function
weight returns the weight of a given edge, with that edge identified by its two incident vertices. For example, calling
weight(@, 4) on the graph of Figure 9.1.1 (c) would return 4. If no such edge exists, the weight is defined to be 0.
So calling weight (0, 2) on the graph of Figure 9.1.1 (c) would return 0.

Functions addEdge and removeEdge add an edge (setting its weight) and removes an edge from the graph,
respectively. Again, an edge is identified by its two incident vertices. addEdge does not permit the user to set the
weight to be 0, because this value is used to indicate a non-existent edge, nor are negative edge weights permitted.
Functions getValue and setValue get and set, respectively, a requested value for Vertex v. In our example
applications the most frequent use of these methods will be to indicate whether a given node has previously been
visited in the process of the algorithm

Nearly every graph algorithm presented in this chapter will require visits to all neighbors of a given vertex. The
neighbors method returns an array containing the indices for the neighboring vertices, in ascending order. The
following lines appear in many graph algorithms.

int[] nList = G.neighbors(v);
for (int i=0; i< nList.length; i++) {
if (G.getValue(nList[i]) != VISITED) {
DoSomething();
}
}

First, an array is generated that contains the indices of the nodes that can be directly reached from node v. The for
loop then iterates through this neighbor array to execute some function on each.

It is reasonably straightforward to implement our graph ADT using either the adjacency list or adjacency matrix. The
sample implementations presented here do not address the issue of how the graph is actually created. The user of
these implementations must add functionality for this purpose, perhaps reading the graph description from a file.
The graph can be built up by using the addEdge function provided by the ADT.

Here is an implementation for the adjacency matrix.

class GraphM implements Graph {
private int[][] matrix;
private Object[] nodeValues;
private int numEdge;

// No real constructor needed
GraphM() { }

// Initialize the graph with n vertices 3457



public void init(int n) {
matrix = new int[n][n];
nodeValues = new Object[n];
numkdge = 0;

}

// Return the number of vertices
public int nodeCount() { return nodeValues.length; }

// Return the current number of edges
public int edgeCount() { return numEdge; }

// Get the value of node with index v
public Object getValue(int v) { return nodeValues[v]; }

// Set the value of node with index v
public void setValue(int v, Object val) { nodeValues[v] = val; }

// Adds a new edge from node v to node w
// Returns the new edge
public void addEdge(int v, int w, int wgt) {
if (wgt == 0) { return; } // Can't store weight of ©
if (matrix[v][w] == 0) {
numeEdge++;
}
matrix[v][w] = wgt;

}

// Get the weight value for an edge
public int weight(int v, int w) { return matrix[v][w]; }

// Removes the edge from the graph.
public void removeEdge(int v, int w) {
if (matrix[v][w] !'= @) {
matrix[v][w] = 0;
numkdge--;
}
}

// Returns true 1iff the graph has the edge
public boolean haskEdge(int v, int w) { return matrix[v][w] != 0; }

// Returns an array containing the indicies of the neighbors of v
public int[] neighbors(int v) {

int i;

int count = 0;

int[] temp;

for (i=0; i<nodeValues.length; i++) {
if (matrix[v][i] !'= @) { count++; }
}
temp = new int[count];
for (i=0, count=0; i<nodeValues.length; i++) {
if (matrix[v][i] !'= @) { temp[count++] = i; }
368
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return temp;
}
}

Array nodeValues stores the information manipulated by the setValue and getValue functions. The edge matrix is
implemented as an integer array of size n x n for a graph of n vertices. Position (4, ) in the matrix stores the weight
for edge (i, 7) if it exists. A weight of zero for edge (i, 5) is used to indicate that no edge connects Vertices ¢ and j.

Given a vertex v, the neighbors method scans through row v of the matix to locate the positions of the various
neighbors. If no edge is incident on v, then returned neighbor array will have length 0. Functions addEdge and
removeEdge adjust the appropriate value in the array. Function weight returns the value stored in the appropriate
position in the array.

Here is an implementation of the adjacency list representation for graphs. Its main data structure is an array of
linked lists, one linked list for each vertex. These linked lists store objects of type Edge, which merely stores the
index for the vertex pointed to by the edge, along with the weight of the edge.

public class GraphL implements Graph {

private class Edge { // Doubly Llinked List node
int vertex, weight;
Edge prev, next;

Edge(int v, int w, Edge p, Edge n) {
vertex = v;
weight = w;
prev = p;
next = n;
}
¥

private Edge[] nodeArray;
private Object[] nodeValues;
private int numEdge;

// No real constructor needed
GraphL() {}

// Initialize the graph with n vertices
public void init(int n) {
nodeArray = new Edge[n];
// List headers;
for (int i=@; i<n; i++) { nodeArray[i] = new Edge(-1, -1, null, null); }
nodeValues = new Object[n];
numEdge = 0;
}

// Return the number of vertices
public int nodeCount() { return nodeArrav.jggeth: ?}




N - - ” o s o

// Return the current number of edges
public int edgeCount() { return numEdge; }

// Get the value of node with index v
public Object getValue(int v) { return nodeValues[v]; }

// Set the value of node with index v
public void setValue(int v, Object val) { nodeValues[v] = val; }

// Return the Link in v's neighbor List that preceeds the
// one with w (or where it would be)
private Edge find (int v, int w) {
Edge curr = nodeArray[Vv];
while ((curr.next != null) & & (curr.next.vertex < w)) {
curr = curr.next;

}

return curr;

}

// Adds a new edge from node v to node w with weight wgt
public void addEdge(int v, int w, int wgt) {
if (wgt == 0) { return; } // Can't store weight of @
Edge curr = find(v, w);
if ((curr.next != null) && (curr.next.vertex == w)) {
curr.next.weight = wgt;

}
else {
curr.next = new Edge(w, wgt, curr, curr.next);
if (curr.next.next != null) { curr.next.next.prev = curr.next; }
}
numeEdge++;

}

// Get the weight value for an edge

public int weight(int v, int w) {
Edge curr = find(v, w);
if ((curr.next == null) || (curr.next.vertex != w)) { return 0; }
else { return curr.next.weight; }

}

// Removes the edge from the graph.
public void removeEdge(int v, int w) {
Edge curr = find(v, w);

if ((curr.next == null) || curr.next.vertex != w) { return; }
else {
curr.next = curr.next.next;
if (curr.next != null) { curr.next.prev = curr; }
}
numEdge--;

}

// Returns true 1iff the graph has the edge
public boolean hasEdge(int v, int w) { retgﬁy weight(v, w) != 0; }



// Returns an array containing the indicies of the neighbors of v
public int[] neighbors(int v) {

int cnt = 0;

Edge curr;

for (curr = nodeArray[v].next; curr != null; curr = curr.next) {
cnt++;

}

int[] temp = new int[cnt];

cnt = 9;

for (curr = nodeArray[v].next; curr != null; curr = curr.next) {
temp[cnt++] = curr.vertex;

}

return temp;

Implementation for GraphL member functions is straightforward in principle, with the key functions being addEdge,
removeEdge, and weight. They simply start at the beginning of the adjacency list and move along it until the desired
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09.03 Graph Traversals
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09.03 Graph Traversals

9.3. Graph Traversals

9.3.1. Graph Traversals

Many graph applications need to visit the vertices of a graph in some specific order based on the graph’s topology.
This is known as a graph traversal and is similar in concept to a tree traversal. Recall that tree traversals visit
every node exactly once, in some specified order such as preorder, inorder, or postorder. Multiple tree traversals
exist because various applications require the nodes to be visited in a particular order. For example, to print a BST’s
nodes in ascending order requires an inorder traversal as opposed to some other traversal. Standard graph
traversal orders also exist. Each is appropriate for solving certain problems. For example, many problems in artificial
intelligence programming are modeled using graphs. The problem domain might consist of a large collection of
states, with connections between various pairs of states. Solving this sort of problem requires getting from a
specified start state to a specified goal state by moving between states only through the connections. Typically, the
start and goal states are not directly connected. To solve this problem, the vertices of the graph must be searched in
some organized manner.

Graph traversal algorithms typically begin with a start vertex and attempt to visit the remaining vertices from there.
Graph traversals must deal with a number of troublesome cases. First, it might not be possible to reach all vertices
from the start vertex. This occurs when the graph is not connected. Second, the graph might contain cycles, and we
must make sure that cycles do not cause the algorithm to go into an infinite loop.

Graph traversal algorithms can solve both of these problems by flagging vertices as VISITED when appropriate. At
the beginning of the algorithm, no vertex is flagged as VISITED. The flag for a vertex is set when the vertex is first
visited during the traversal. If a flagged vertex is encountered during traversal, it is not visited a second time. This
keeps the program from going into an infinite loop when it encounters a cycle.

Once the traversal algorithm completes, we can check to see if all vertices have been processed by checking
whether they have the VISITED flag set. If not all vertices are flagged, we can continue the traversal from another
unvisited vertex. Note that this process works regardless of whether the graph is directed or undirected. To ensure
visiting all vertices, graphTraverse could be called as follows on a graph G:

static void graphTraverse(Graph G) {
© o int v
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G.setValue(v, null); // Initialize

¥

for (v=0; v<G.nodeCount(); v++) {
if (G.getValue(v) != VISITED) {

doTraversal(G, v);

}

¥

}

Function doTraversal might be implemented by using one of the graph traversals described next.

9.3.1.1. Depth-First Search

Our first method for organized graph traversal is called depth-first search (DFS). Whenever a vertex v is visited
during the search, DFS will recursively visit all of v ‘s unvisited neighbors. Equivalently, DFS will add all edges
leading out of v to a stack. The next vertex to be visited is determined by popping the stack and following that edge.
The effect is to follow one branch through the graph to its conclusion, then it will back up and follow another branch,
and so on. The DFS process can be used to define a depth-first search tree. This tree is composed of the edges
that were followed to any new (unvisited) vertex during the traversal, and leaves out the edges that lead to already
visited vertices. DFS can be applied to directed or undirected graphs.

This visualization shows a graph and the result of performing a DFS on it, resulting in a depth-first search tree.

= © & &

Let's look at the details of how a depth-first seach works.

; © -

Here is an implementation for the DFS alaorithm. 373



static void DFS(Graph G, int v) {
PreVisit(G, v);
G.setValue(v, VISITED);
int[] nList = G.neighbors(v);
for (int i=0; i< nList.length; i++) {
if (G.getValue(nList[i]) != VISITED) {
DFS(G, nList[i]);
}

}
PostVisit(G, v);

This implementation contains calls to functions PreVisit and PostVisit. These functions specify what activity
should take place during the search. Just as a preorder tree traversal requires action before the subtrees are visited,
some graph traversals require that a vertex be processed before ones further along in the DFS. Alternatively, some
applications require activity after the remaining vertices are processed; hence the call to function PostVisit. This
would be a natural opportunity to make use of the visitor design pattern.

The following visualization shows a random graph each time that you start it, so that you can see the behavior on
different examples. It can show you DFS run on a directed graph or an undirected graph. Be sure to look at an
example for each type of graph.

Depth-First Search

Undirected l [ Directed
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DFS processes each edge once in a directed graph. In an undirected graph, DFS processes each edge from both
directions. Each vertex must be visited, but only once, so the total cost is ©(|V| + |E|).

Here is an exercise for you to practice DFS.

( Reset | Model Answer J C

Instructions:

Reproduce the behavior of the DFS algorithm for the graph below. Just click on the edges in the order that t
will be traversed by the DFS algorithm. Start with Node A. If there is more than one node that could be visite
next, choose the one that comes first in alphabetical order.

Score: 0/ 6, Points remaining: 6, Points lost: 0

9.3.2. Breadth-First Search

Our second graph ftraversal algorithm is known as a breadth-first search (BFS). BFS examines all vertices
connected to the start vertex before visiting vertices further away. BFS is implemented similarly to DFS, except that

a queue replaces the recursion stack. Note that if the graph is a tree and the start vertex is at the root, BFS is



equivalent 1o visiting vertices level by level Trom top to bottom.

This visualization shows a graph and the result of performing a BFS on it, resulting in a breadth-first search tree.

& © O &

Let's look at the details of how a breadth-first seach works.

Here is an implementation for BFS.

static void BFS(Graph G, int v) {
LQueue Q = new LQueue(G.nodeCount());
Q.enqueue(Vv);
G.setValue(v, VISITED);
while (Q.length() > @) { // Process each vertex on Q
v = (Integer)Q.dequeue();
PrevVisit(G, v);
int[] nList = G.neighbors(v);
for (int i=0; i< nList.length; i++) {
if (G.getValue(nList[i]) != VISITED) { // Put neighbors on Q
G.setValue(nList[i], VISITED);
Q.enqueue(nList[i]);
}

b
PostVisit(G, v);
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The following visualization shows a random graph each time that you start it, so that you can see the behavior on
different examples. It can show you BFS run on a directed graph or an undirected graph. Be sure to look at an
example for each type of graph.

Breadth-First Search C

Undirected ] I Directed

Here is an exercise for you to practice BFS.

( Reset | Model Answer ] C

Instructions:

Reproduce the behavior of the BFS algorithm for the graph below. Just click on the edges in the order that t
will be traversed by the BFS algorithm. Start with Node A. If there is more than one node that could be visite
next, choose the one that comes first in alphabetical order.

Score: 0/ 6, Points remaining: 6, Points lost: 0

o—
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Appendix A: Glossary

OpenDSA License

OpenDSA is Copyright © 2013-2016 by Ville Karavirta and Cliff Shaffer.
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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10.1. Glossary

2-3 tree

A specialized form of the B-tree where each internal node has either 2 children or 3 children. Key values are ordered
to maintain the binary search tree property. The 2-3 tree is always height balanced, and its insert, search, and
remove operations all have ©(logn) cost.

80/20 rule

Given a typical application where there is a collection of records and a series of search operations for records, the
80/20 rule is an empirical observation that 80% of the record accessess typically go to 20% of the records. The exact
values varies between data collections, and is related to the concept of locality of reference.

abstract data type

Abbreviated ADT. The specification of a data type within some language, independent of an implementation. The
interface for the ADT is defined in terms of a type and a set of operations on that type. The behavior of each
operation is determined by its inputs and outputs. An ADT does not specify how the data type is implemented. These
implementation details are hidden from the user of the ADT and protected from outside access, a concept referred to
as encapsulation.

accept

When a finite automata executes on a string and terminates in an accepting state, it is said to accept the string. The
finite automata is said to accept the language that consists of all strings for which the finite automata completes
execution in an accepting state.

accepting state

Part of the definition of a finite automata is to designate some states as accepting states. If the finite automata
executes on an input string and completes the computation in an accepting state, then the machine is said to accept
the string.

activation record

The entity that is stored on the runtime stack during program execution. It stores any active local variable and the
return address from which a new subroutine is being called, so that this information can be recovered when the
subroutine terminates.

acyclic graph
In graph terminology, a graph that contains no cycles.

address

A location in memory.

adjacency list

An implementation for a graph that uses an (array-based) list to represent the vertices of the graph, and each vertex
is in turn represented by a (linked) list of the vertices that are neighbors.

adjacency matrix

An implementation for a graph that uses a 2-dimensional array where each row and each column corresponds to a
vertex in the graph. A given row and column in the matrix corresponds to an edge from the vertex corresponding to
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the row to the vertex corresponding to the column.

adjacent

Two nodes of a tree or two vertices of a graph are said to be adjacent if they have an edge connecting them. If the
edge is directed from a to b, then we say that a is adjacent to b, and b is adjacent from a.

ADT

Abbreviation for abstract data type.

adversary
A fictional construct introduced for use in an adversary argument.

adversary argument

A type of lower bounds proof for a problem where a (fictional) “adversary” is assumed to control access to an
algorithm’s input, and which yields information about that input in such a way that will drive the cost for any proposed
algorithm to solve the problem as high as possible. So long as the adversary never gives an answer that conflicts with
any previous answer, it is permitted to do whatever necessary to make the algorithm require as much cost as possible.

aggregate type

A data type whose members have subparts. For example, a typical database record. Another term for this is
composite type.

algorithm
A method or a process followed to solve a problem.

algorithm analysis

A less formal version of the term asymptotic algorithm analysis, generally used as a synonym for asymptotic
analysis.

alias

Another name for something. In programming, this usually refers to two references that refer to the same object.

all-pairs shortest paths problem

Given a graph with weights or distances on the edges, find the shortest paths between every pair of vertices in the
graph. One approach to solving this problem is Floyd’s algorithm, which uses the dynamic programming
algorithmic technique.

allocated
allocation
Reserving memory for an object in the Heap memory.

alphabet
The characters or symbols that strings in a given language may be composed of.

alphabet trie

A trie data structure for storing variable-length strings. Level i of the tree corresponds to the letter in position i of the
string. The root will have potential branches on each intial letter of string. Thus, all strings starting with “a” will be
stored in the “a” branch of the tree. At the second level, such strings will be separated by branching on the second

letter.
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amortized analysis

An algorithm analysis techique that looks at the total cost for a series of operations and amortizes this total cost over
the full series. This is as opposed to considering every individual operation to independently have the worst case
cost, which might lead to an overestimate for the total cost of the series.

amortized cost
The total cost for a series of operations to be used in an amortized analysis.

ancestor
In a tree, for a given node A, any node on a path from A up to the root is an ancestor of A.

antisymmetric
In set notation, relation R is antisymmetric if whenever aRb and bRa, then a = b, for all a,b € S.

approximation algorithm
An algorthm for an optimization problem that finds a good, but not necessarily cheapest, solution.

arm
In the context of an I/O head, this attaches the sensor on the 1/0 head to the boom.

array
A data type that is used to store elements in consecutive memory locations and refers to them by an index.

array-based list

An implementation for the list ADT that uses an array to store the list elements. Typical implementations fix the array
size at creation of the list, and the overhead is the number of array positions that are presently unused.

array-based queue
Analogous to an array-based list, this uses an array to store the elements when implementing the queue ADT.

array-based stack
Analogous to an array-based list, this uses an array to store the elements when implementing the stack ADT.

ASCII character coding

American Standard Code for Information Interchange. A commonly used method for encoding characters using a
binary code. Standard ASCII uses an 8-bit code to represent upper and lower case letters, digits, some punctuation,
and some number of non-printing characters (such as carrage return). Now largely replaced by UTF-8 encoding.

assembly code

A form of intermediate code created by a compiler that is easy to convert into the final form that the computer can
execute. An assembly language is typically a direct mapping of one or a few instructions that the CPU can execute into
a mnemonic form that is relatively easy for a human to read.

asymptotic algorithm analysis
A more formal term for asymptotic analysis.

asymptotic analysis
A method for estimating the efficiency of an algorithm or computer program by identifying its growth rate. Asymptotic
analysis also gives a way to define the inherent difficulty of a problem. We frequently use the term algorithm

analysis to mean the same thing.
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attribute
In object-oriented programming, a synonym for data members.

automata
Synonym for finite state machine.

automatic variable

A synonym for local variable. When program flow enters and leaves the variable’s scope, automatic variables will be
allocated and de-allocated automatically.

average case

In algorithm analysis, the average of the costs for all problem instances of a given input size n. If not all problem
instances have equal probability of occurring, then average case must be calculated using a weighted average.

average seek time

Expected (average) time to perform a seek operation on a disk drive, assuming that the seek is between two
randomly selected tracks. This is one of two metrics commonly provided by disk drive vendors for disk drive
performance, with the other being track-to-track seek time.

AVL Tree

A variant implementation for the BST, which differs from the standard BST in that it uses modified insert and remove
methods in order to keep the tree balanced. Similar to a Splay Tree in that it uses the concept of rotations in the
insert and remove operations.

B*-tree
A variant on the B+ -tree. The B* tree is identical to the B tree, except for the rules used to split and merge nodes.
Instead of splitting a node in half when it overflows, the B* tree gives some records to its neighboring sibling, if
possible. If the sibling is also full, then these two nodes split into three. Similarly, when a node underflows, it is
combined with its two siblings, and the total reduced to two nodes. Thus, the nodes are always at least two thirds full.

Bt -tree

The most commonly implemented form of B-tree. A B* -tree does not store data at the internal nodes, but instead
only stores search key values as direction finders for the purpose of searching through the tree. Only the leaf nodes
store a reference to the actual data records.

B-tree

A method for indexing a large collection of records. A B-tree is a balanced tree that typically has high branching
factor (commonly as much as 100 children per internal node), causing the tree to be very shallow. When stored on
disk, the node size is selected to be same as the desired unit of I/O (so some multiple of the disk sector size). This
makes it easy to gain access to the record associated with a given search key stored in the tree with few disk
accesses. The most commonly implemented variant of the B-tree is the B* -tree.

backing storage

In the context of a caching system or buffer pool, backing storage is the relatively large but slower source of data
that needs to be cached. For example, in a virtual memory, the disk drive would be the backing storage. In the
context of a web browser, the Internet might be considered the backing storage.

backtracking

A heuristic for brute-force search of a solution space. It is essentially a depth-first search of the solution space. This
can be improved using a branch-and-bounds algorithgg3



bad reference
A reference is referred to as a bad reference if it is allocated but not initialized.

bag
In set notation, a bag is a collection of elements with no order (like a set), but which allows for duplicate-valued
elements (unlike a set).

balanced tree

A tree where the subtrees meet some criteria for being balanced. Two possibilities are that the tree is height
balanced, or that the tree has a roughly equal number of nodes in each subtree.

base
Synonym for radix.

base case

In recursion or proof by induction, the base case is the termination condition. This is a simple input or value that can
be solved (or proved in the case of induction) without resorting to a recursive call (or the induction hypothesis).

base class

In object-oriented programming, a class from which another class inherits. The class that inherits is called a
subclass.

base type

The data type for the elements in a set. For example, the set might consist of the integer values 3, 5, and 7. In this
example, the base type is integers.

basic operation

Examples of basic operations include inserting a data item into the data structure, deleting a data item from the data
structure, and finding a specified data item.

best case

In algorithm analysis, the problem instance from among all problem instances for a given input size n that has least
cost. Note that the best case is not when n is small, since we are referring to the best from a class of inputs (i.e, we
want the best of those inputs of size n).

best fit

In a memory manager, best fit is a heuristic for deciding which free block to use when allocating memory from a
memory pool. Best fit will always allocate from the smallest free block that is large enough to service the memory
request. The rationale is that this will be the method that best preserves large blocks needed for unusually large
requests. The disadvantage is that it tends to cause external fragmentation in the form of small, unuseable memory
blocks.

BFS
Abbreviation for breadth-first search.

big-Oh notation
In algorithm analysis, a shorthand notation for describing the upper bound for an algorithm or problem.

binary insert sort
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A variation on insertion sort where the position of the value being inserted is located by binary search, and then put
into place. In normal usage this is not an improvement on standard insertion sort because of the expense of moving
many items in the array. But it is directly useful if the cost of comparison is high compared to that of moving an
element, or is theoretically useful if we only care to count the cost of comparisons.

binary search

A standard recursive algorithm for finding the record with a given search key value within a sorted list. It runs in
O(logn) time. At each step, look at the middle of the current sublist, and throw away the half of the records whose keys
are either too small or too large.

binary search tree

A binary tree that imposes the following constraint on its node values: The search key value for any node A must be
greater than the (key) values for all nodes in the left subtree of A, and less than the key values for all nodes in the
right subtree of A. Some convention must be adopted if multiple nodes with the same key value are permitted, typically
these are required to be in the right subtree.

binary search tree property

The defining relationship between the key values for nodes in a BST. All nodes stored in the left subtree of a node
whose key value is K have key values less than or equal to K. All nodes stored in the right subtree of a node whose
key value is K have key values greater than K.

binary tree

A finite set of nodes which is either empty, or else has a root node together two binary trees, called the left and right
subtrees, which are disjoint from each other and from the root.

binary trie
A binary tree whose structure is that of a trie. Generally this is an implementation for a search tree. This means that
the search key values are thought of a binary digits, with the digit in the position corresponding to this a node’s level
in the tree indicating a left branch if it is “0”, or a right branch if it is “1”. Examples include the Huffman coding tree
and the Bintree.

binning
In hashing, binning is a type of hash function. Say we are given keys in the range 0 to 999, and have a hash table of
size 10. In this case, a possible hash function might simply divide the key value by 100. Thus, all keys in the range 0 to
99 would hash to slot 0, keys 100 to 199 would hash to slot 1, and so on. In other words, this hash function “bins” the
first 100 keys to the first slot, the next 100 keys to the second slot, and so on. This approach tends to make the hash
function dependent on the distribution of the high-order bits of the keys.

Binsort

A sort that works by taking each record and placing it into a bin based on its value. The bins are then gathered up in
order to sort the list. It is generally not practical in this form, but it is the conceptual underpinning of the radix sort.

bintree

A spatial data structure in the form of binary trie, typically used to store point data in two or more dimensions. Similar
to a PR quadtree except that at each level, it splits one dimension in half. Since many leaf nodes of the PR quadtree
will contain no data points, implementation often makes use of the flyweight design pattern.

bitmap
bit vector
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An array that stores a single bit at each position. Typically these bits represent Boolean variables associated with a
collection of objects, such that the i th bit is the Boolean value for the i th object.

block

A unit of storage, usually referring to storage on a disk drive or other peripheral storage device. A block is the basic
unit of I/O for that device.

Boolean expression

A Boolean expression is comprised of Boolean variables combined using the operators AND (-), OR (+), and NOT
(to negate Boolean variable =z we write z).

Boolean variable

A variable that takes on one of the two values True and False.

boom

In the context of an I/O head, is the central structure to which all of the I/O heads are attached. Thus, the all move
together during a seek operation.

bounding box

A box (usually aligned to the coordinate axes of the reference system) that contains a (potentially complex) object. In
graphics and computational geometry, complex objects might be associated with a bounding box for use by algorithms
that search for objects in a particular location. The idea is that if the bounding box is not within the area of interest,
then neither is the object. Checking the bounding box is cheaper than checking the object, but it does require some
time. So if enough objects are not outside the area of interest, this approach will not save time. But if most objects are
outside of the area of interest, then checking bounding boxes first can save a lot of time.

branch-and-bounds algorithm

A variation on backtracking that applies to optimization problems. We traverse the solution tree as with
backtracking. Proceeding deeper in the solution tree generally requires additional cost. We remember the best-cost
solution found so far. If the cost of the current branch in the tree exceeds the best tour cost found so far, then we know
to stop pursuing this branch of the tree. At this point we can immediately back up and take another branch.

breadth-first search

A graph traversal algorithm. As the name implies, all immediate neighbors for a node are visited before any more-
distant nodes are visited. BFS is driven by a queue. A start vertex is placed on the queue. Then, until the queue is
empty, a node is taken off the queue, visited, and and then any unvisited neighbors are placed onto the queue.

break-even point

The point at which two costs become even when measured as the function of some variable. In particular, used to
compare the space requirements of two implementations. For example, when comparing the space requirements of an
array-based list implementation versus a linked list implementation, the key issue is how full the list is compared to
its capacity limit (for the array-based list). The point where the two representations would have the same space cost is
the break-even point. As the list becomes more full beyond this point, the array-based list implementation becomes
more space efficent, while as the list becomes less full below this point, the linked list implementation becomes more
space efficient.

BST

Abbreviation for binary search tree.

bubble sort
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A simple sort that requires Theta(n?) time in best, average, and worst cases. Even an optimized version will normally
run slower than insertion sort, so it has little to recommend it.

bucket
In bucket hashing, a bucket is a sequence of slots in the hash table that are grouped together.

bucket hashing

A method of hashing where multiple slots of the hash table are grouped together to form a bucket. The hash
function then either hashes to some bucket, or else it hashes to a home slot in the normal way, but this home slot is
part of some bucket. Collision resolution is handled first by attempting to find a free position within the same bucket
as the home slot. If the bucket if full, then the record is placed in an overflow bucket.

bucket sort

A variation on the Binsort, where each bin is associated with a range of key values. This will require some method of
sorting the records placed into each bin.

buddy method

In a memory manager, an alternative to using a free block list and a sequential fit method to seach for a suitable
free block to service a memory request. Instead, the memory pool is broken down as needed into smaller chunks by
splitting it in half repeatedly until the smallest power of 2 that is as big or bigger than the size of the memory request is
reached. The name comes from the fact that the binary representation for the start of the block positions only differ by
one bit for adjacent blocks of the same size. These are referred to as “buddies” and will be merged together if both are
free.

buffer

A block of memory, most often in primary storage. The size of a buffer is typically one or a multiple of the basic unit of
I/0O that is read or written on each access to secondary storage such as a disk drive.

buffer passing
An approach to implementing the ADT for a buffer pool, where a pointer to a buffer is passed between the client and
the buffer pool. This is in contrast to a message passing approach, it is most likely to be used for long messages or
when the message size is always the same as the buffer size, such as when implementing a B-tree.

buffer pool

A collection of one or more buffers. The buffer pool is an example of a cache. It is stored in primary storage, and
holds data that is expected to be used in the near future. When a data value is requested, the buffer pool is searched
first. If the value is found in the buffer pool, then secondary storage need not be accessed. If the value is not found in
the buffer pool, then it must be fetched from secondary storage. A number of traditional heuristics have been
developed for deciding which data to flush from the buffer pool when new data must be stored, such as least recently
used.

buffering
A synonym for caching. More specifically, it refers to an arrangement where all accesses to data (such as on a
peripheral storage device) must be done in multiples of some minimum unit of storage. On a disk drive, this basic or
smallest unit of 1/O is a sector. It is called “buffering” because the block of data returned by such an access is stored
in a buffer.

caching

The concept of keeping selected data in main memory. The goal is to have in main memory the data values that are
most likely to be used in the near future. An example of3a8%aching technique is the use of a buffer pool.



call stack
Known also as execution stack. A stack that stores the function call sequence and the return address for each
function.

Cartesian product
For sets, this is another name for the set product.

ceiling
Written [z], for real value z the ceiling is the least integer > z.

child
In a tree, the set of nodes directly pointed to by a node R are the children of R.

circular first fit
In a memory manager, circular first fit is a heuristic for deciding which free block to use when allocating memory
from a memory pool. Circular first fit is a minor modification on first fit memory allocation, where the last free block
allocated from is remembered, and search for the next suitable free block picks up from there. Like first fit, it has the
advantage that it is typically not necessary to look at all free blocks on the free block list to find a suitable free block.
And it has the advantage over first fit that it spreads out memory allocations evenly across the free block list. This
might help to minimize external fragmentation.

circular list
A list ADT implementation variant where the last element of the list provides access to the first element of the list.

class
In the object-oriented programming paradigm an ADT and its implementation together make up a class. An
instantiation of a class within a program is termed an object.

class hierarchy
In object-oriented programming, a set of classes and their interrelationships. One of the classes is the base class,
and the others are subclasses that inherit either directly or indirectly from the base class.

clause
In a Boolean expression, a clause is one or more literals OR’ed together.

client
The user of a service. For example, the object or part of the program that calls a memory manager class is the client
of that memory manager. Likewise the class or code that calls a buffer pool.

clique
In graph terminology, a clique is a subgraph, defined as any subset U of the graph’s vertices such that every vertex
in U has an edge to every other vertex in U. The size of the clique is the number of vertices in the clique.

closed
A set is closed over a (binary) operation if, whenever the operation is applied to two members of the set, the result is a
member of the set.

closed hash system
A hash system where all records are stored in slots of the hash table. This is in contrast to an open hash system.
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closed-form solution

An algebraic equation with the same value as a summation or recurrence relation. The process of replacing the
summation or recurrence with its closed-form solution is known as solving the summation or recurrence.

cluster

In file processing, a collection of physically adjacent sectors that define the smallest allowed allocation unit of space
to a disk file. The idea of requiring space to be allocated in multiples of sectors is that this will reduce the number of
extents required to store the file, which reduces the expected number of seek operations reuquired to process a
series of disk accesses to the file. The disadvantage of large cluster size is that it increases internal fragmentation
since any space not actually used by the file in the last cluster is wasted.

code generation

A phase in a compiler that transforms intermediate code into the final executable form of the code. More generally,
this can refer to the process of turning a parse tree (that determines the correctness of the structure of the program)
into actual instructions that the computer can execute.

code optimization

A phase in a compiler that makes changes in the code (typically assembly code) with the goal of replacing it with a
version of the code that will run faster while performing the same computation.

cohesion

In object-oriented programming, a term that refers to the degree to which a class has a single well-defined role or
responsibility.

Collatz sequence
For a given integer value n, the sequence of numbers that derives from performing the following computatin on n

while (n > 1)
if (0DD(n))
n=3%n+1;
else
n=n/2;

This is famous because, while it terminates for any value of n that you try, it has never been proven to be a fact that
this always terminates.

collision

In a hash system, this refers to the case where two search keys are mapped by the hash function to the same slot
in the hash table. This can happen on insertion or search when another record has already been hashed to that slot.
In this case, a closed hash system will require a process known as collision resolution to find the location of the
desired record.

collision resolution
The outcome of a collision resolution policy.

collision resolution policy

In hashing, the process of resolving a collision. Specifically in a closed hash system, this is the process of finding

the proper position in a hash table that contains the desired record if the hash function did not return the correct
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position for that record due to a collision with another record.

comparable

The concept that two objects can be compared to determine if they are equal or not, or to determine which one is
greater than the other. In set notation, elements = and y of a set are comparable under a given relation R if either zRy
or yRz. To be reliably compared for a greater/lesser relationship, the values being compared must belong to a total
order. In programming, the property of a data type such that two elements of the type can be compared to determine if
they the same (a weaker version), or which of the two is larger (a stronger version). Comparable is also the name of
an interface in Java that asserts a comparable relationship between objects with a class, and .compareTo() is the
Comparable interface method that implements the actual comparison between two objects of the class.

comparator
A function given as a parameter to a method of a library (or alternatively, a parameter for a C++ template or a Java
generic). The comparator function concept provides a generic way encapulates the process of performing a
comparison between two objects of a specific type. For example, if we want to write a generic sorting routine, that can
handle any record type, we can require that the user of the sorting routine pass in a comparator function to define how
records in the collection are to be compared.

comparison

The act of comparing two keys or records. For many data types, a comparison has constant time cost. The number
of comparisons required is often used as a measure of cost for sorting and searching algorithms.

compile-time polymorphism
A form of polymorphism known as Overloading. Overloaded methods have the same names, but different signatures
as a method available elsewhere in the class. Compare to run-time polymorphism.

compiler
A computer program that reads computer programs and converts them into a form that can be directly excecuted by
some form of computer. The major phases in a compiler include lexical analysis, syntax analysis, intermediate
code generation, code optimization, and code generation. More broadly, a compiler can be viewed as parsing the
program to verify that it is syntactically correct, and then doing code generation to convert the hig-level program into
something that the computer can execute.

complete binary tree

A binary tree where the nodes are filled in row by row, with the bottom row filled in left to right. Due to this requirement,
there is only one tree of n nodes for any value of n. Since storing the records in an array in row order leads to a
simple mapping from a node’s position in the array to its parent, siblings, and children, the array representation is
most commonly used to implement the complete binary tree. The heap data structure is a complete binary tree with
partial ordering constraints on the node values.

complete graph
A graph where every vertex connects to every other vertex.

complex number

In mathematics, an imaginary number, that is, a number with a real component and an imaginary component.

Composite design pattern
Given a class hierarchy representing a set of objects, and a container for a collection of objects, the composite design
pattern addresses the relationship between the object hierarchy and a bunch of behaviors on the objects. In the
composite design, each object is required to implement?)’[gg collection of behaviors. This is in contrast to the procedural



approach where a behavior (such as a tree traversal) is implemented as a method on the object collection (such as a
tree). Procedural tree traversal requires that the tree have a method that understands what to do when it encounters
any of the object types (internal or leaf nodes) that the tree might contain. The composite approach would have the
tree call the “traversal” method on its root node, which then knows how to perform the “traversal” behavior. This might
in turn require invoking the traversal method of other objects (in this case, the children of the root).

composite type
A type whose members have subparts. For example, a typical database record. Another term for this is aggregate
type.

composition
Relationships between classes based on usage rather than inheritance, i.e. a HAS-A relationship. For example,
some code in class ‘A’ has a reference to some other class ‘B’.

computability
A branch of computer science that deals with the theory of solving problems through computation. More specificially, it
deals with the limits to what problems (functions) are computable. An example of a famous problem that cannot in
principle be solved by a computer is the halting problem.

computation

In a finite automata, a computation is a sequence of configurations for some length n > 0. In general, it is a series
of operations that the machine performs.

computational complexity theory

A branch of the theory of computation in theoretical computer science and mathematics that focuses on classifying
computational problems according to their inherent difficulty, and relating those classes to each other. An example is
the study of NP-Complete problems.

configuration

For a finite automata, a complete specification for the current condition of the machine on some input string. This
includes the current state that the machine is in, and the current condition of the string, including which character is
about to be processed.

Conjunctive Normal Form
CNF
A Boolean expression written as a series of clauses that are AND’ed together.

connected component

In an undirected graph, a subset of the nodes such that each node in the subset can be reached from any other
node in that subset.

connected graph
An undirected graph is a connected graph if there is at least one path from any vertex to any other.

constant running time

The cost of a function whose running time is not related to its input size. In Theta notation, this is traditionally written
as 0(1).

constructive induction
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A process for finding the closed form for a recurrence relation, that involves substituting in a guess for the closed
form to replace the recursive part(s) of the recurrence. Depending on the goal (typically either to show that the
hypothesized growth rate is right, or to find the precise constants), one then manipulates the resulting non-recursive
equation.

container
container class

A data structure that stores a collection of records. Typical examples are arrays, search trees, and hash tables.

context-free grammar

A grammar comprised only of productions of the form A — = where A is a non-terminal and z is a series of one or
more terminals and non-terminals. That is, the given non-terminal A can be replaced at any time.

context-free language
The set of languages that can be defined by context-sensitive grammars.

context-sensitive grammar

A grammar comprised only of productions of the form zAy — zvy where A is a non-terminal and z and y are each a
series of one or more terminals and non-terminals. That is, the given non-terminal A can be replaced only when it is
within the proper context.

cost

The amount of resources that the solution consumes.

cost model

In algorithm analysis, a definition for the cost of each basic operation performed by the algorithm, along with a
definition for the size of the input. Having these definitions allows us to calculate the cost to run the algorithm on a
given input, and from there determine the growth rate of the algorithm. A cost model would be considered “good” if it
yields predictions that conform to our understanding of reality.

countably infinite
countable

A set is countably infinite if it contains a finite number of elements, or (for a set with an infinite number of elements) if
there exists a one-to-one mapping from the set to the set of integers.

CPU

Acronym for Central Processing Unit, the primary processing device for a computer.

current position

A property of some list ADTs, where there is maintained a “current position” state that can be referred to later.

cycle
In graph terminology, a cycle is a path of length three or more that connects some vertex v; to itself.

cylinder

A disk drive normally consists of a stack of platters. While this might not be so true today, traditionally all of the 1/O
heads moved together during a seek operation. Thus, when a given 1/0 head is positioned over a particular track on
a platter, the other I/O heads are also positioned over the corresponding track on their platters. That collection of
tracks is called a cylinder. A given cylinder represents all of the data that can be read from all of the platters without

doing another seek operation.
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cylinder index
In the ISAM system, a simple linear index that stores the lowest key value stored in each cylinder.

cylinder overflow
In the ISAM system, this is space reserved for storing any records that can not fit in their respective cylinder.

DAG
Abbreviation for directed acyclic graph.

data field

In object-oriented programming, a synonym for data member.

data item
A piece of information or a record whose value is drawn from a type.

data member

The variables that together define the space required by a data item are referred to as data members. Some of the
commonly used synonyms include data field, attribute, and instance variable.

data structure
The implementation for an ADT.

data type
A type together with a collection of operations to manipulate the type.

deallocated
deallocation
Free the memory allocated to an unused object.

decision problem
A problem whose output is either “YES” or “NO”.

decision tree

A theoretical construct for modeling the behavior of algorithms. Each point at which the algorithm makes a decision
(such as an if statement) is modeled by a branch in the tree that represents the algorithms behavior. Decision trees
can be used in lower bounds proofs, such as the proof that sorting requires Q(nlogn) comparisons in the worst
case.

deep copy
Copying the actual content of a pointee.

degree
In graph terminology, the degree for a vertex is its number of neighbors. In a directed graph, the in degree is the
number of edges directed into the vertex, and the out degree is the number of edges directed out of the vertex. In tree
terminology, the degree for a node is its number of children.

delegation mental model for recursion
A way of thinking about the process of recursion. The recursive function “delegates” most of the work when it makes
the recursive call. The advantage of the delegation mental model for recursion is that you don’t need to think about
how the delegated task is performed. It just gets done. 393



dense graph

A graph where the actual number of edges is a large fraction of the possible number of edges. Generally, this is
interpreted to mean that the degree for any vertex in the graph is relatively high.

depth
The depth of a node M in a tree is the length of the path from the root of the tree to M.

depth-first search

A graph traversal algorithm. Whenever a v is visited during the traversal, DFS will recursively visit all of v ‘s
unvisited neighbors.

depth-first search tree

A tree that can be defined by the operation of a depth-first search (DFS) on a graph. This tree would consist of the
nodes of the graph and a subset of the edges of the graph that was followed during the DFS.

dequeue
A specialized term used to indicate removing an element from a queue.

dereference

Accessing the value of the pointee for some reference variable. Commonly, this happens in a language like Java
when using the “dot” operator to access some field of an object.

derivation

In formal languages, the process of executing a series of production rules from a grammar. A typical example of a
derivation would be the series of productions executed to go from the start symbol to a given string.

descendant

In a tree, the set of all nodes that have a node A as an ancestor are the descendants of A. In other words, all of the
nodes that can be reached from A by progressing downwards in tree. Another way to say it is: The children of A, their
children, and so on.

deserialization
The process of returning a serialized representation for a data structure back to its original in-memory form.

design pattern

An abstraction for describing the design of programs, that is, the interactions of objects and classes. Experienced
software designers learn and reuse patterns for combining software components, and design patterns allow this
design knowledge to be passed on to new programmers more quickly.

deterministic

Any finite automata in which, for every pair of state and symbol, there is only a single transition. This means that
whenever the machine is in a given state and sees a given symbol, only a single thing can happen. This is in contrast
to a non-deterministic finite automata, which has at least one state with multiple transitions on at least one symbol.

deterministic algorithm

An algorithm that does not involve any element of randomness, and so its behavior on a given input will always be the
same. This is in contrast to a randomized algorithm.

Deterministic Finite Automata

Deterministic Finite Acceptor
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DFA

An automata or abstract machine that can process an input string (shown on a tape) from left to right. There is a
control unit (with states), behavior defined for what to do when in a given state and with a given symbol on the current
square of the tape. All that we can “do” is change state before going to the next letter to the right.

DFS
Abbreviation for depth-first search.

diagonalization argument

A proof technique for proving that a set is uncountably infinite. The approach is to show that, no matter what order
the elements of the set are put in, a new element of the set can be constructed that is not in that ordering. This is done
by changing the 7 th value or position of the element to be different from that of the i th element in the proposed
ordering.

dictionary
An abstract data type or interface for a data structure or software subsystem that supports insertion, search, and
deletion of records.

dictionary search

A close relative of an interpolation search. In a classical (paper) dictionary of words in a natural language, there are
markings for where in the dictionary the words with a given letter start. So in typical usage of such a dictionary, words
are found by opening the dictionary to some appropriate place within the pages that contain words starting with that
letter.

digraph
Abbreviation for directed graph.

Dijkstra’s algorithm

An algorithm to solve the single-source shortest paths problem in a graph. This is a greedy algorithm. It is nearly
identical to Prim’s algorithm for finding a minimal-cost spanning tree, with the only difference being the calculation
done to update the best-known distance.

diminishing increment sort
Another name for Shellsort.

direct access

A storage device, such as a disk drive, that has some ability to move to a desired data location more-or-less directly.
This is in contrast to a sequential access storage device such as a tape drive.

direct proof

In general, a direct proof is just a “logical explanation”. A direct proof is sometimes referred to as an argument by
deduction. This is simply an argument in terms of logic. Often written in English with words such as “if ... then”, it could
also be written with logic notation such as P = Q.

directed acyclic graph

A graph with no cycles. Abbreviated as DAG. Note that a DAG is not necessarily a tree since a given node might
have multiple parents.

directed edge
An edge that goes from vertex to another. In contrast, %gémdirected edge simply links to vertices without a direction.



directed graph
A graph whose edges each are directed from one of its defining vertices to the other.

dirty bit
Within a buffer pool, a piece of information associated with each buffer that indicates whether the contents of the
buffer have changed since being read in from backing storage. When the buffer is flushed from the buffer pool, the
buffer’'s contents must be written to the backing storage if the dirty bit is set (that is, if the contents have changed).
This means that a relatively expensive write operation is required. In contrast, if the dirty bit is not set, then it is
unnecessary to write the contents to backing storage, thus saving time over not keeping track of whether the contents
have changed or not.

Discrete Fourier Transform
DFT

Let a = [ag,a1,-..,a,1]7 be a vector that stores the coefficients for a polynomial being evaluated. We can then do the
calculations to evaluate the polynomial at the n th rootsofunity < nthrootsofunit > by multiplying the A, matrix by the
coefficient vector. The resulting vector F, is called the Discrete Fourier Transform (or DFT) for the polynomial.

discriminator

A part of a multi-dimensional search key. Certain tree data structures such as the bintree and the kd tree operate
by making branching decisions at nodes of the tree based on a single attribute of the multi-dimensional key, with the
attribute determined by the level of the node in the tree. For example, in 2 dimensions, nodes at the odd levels in the
tree might branch based on the z value of a coordinate, while at the even levels the tree would branch based on the y
value of the coordinate. Thus, the = coordinate is the discriminator for the odd levels, while the y coordinate is the
discriminator for the even levels.

disjoint
Two parts of a data structure or two collections with no objects in common are disjoint. This term is often used in
conjunction with a data structure that has nodes (such as a tree). Also used in the context of sets, where two subsets
are disjoint if they share no elements.

disjoint sets

A collection of sets, any pair of which share no elements in common. A collection of disjoint sets partitions some
objects such that every object is in exactly one of the disjoint sets.

disk access

The act of reading data from a disk drive (or other form of peripheral storage). The number of times data must be
read from (or written to) a disk is often a good measure of cost for an algorithm that involves disk I/O, since this is
usually the dominant cost.

disk controller

The control mechanism for a disk drive. Responsible for the action of reading or writing a sector of data.

disk drive

An example of peripheral storage or secondary storage. Data access times are typically measured in thousandths
of a second (milliseconds), which is roughly a million times slower than access times for RAM, which is an example of
a primary storage device. Reads from and writes to a disk drive are always done in terms of some minimum size,
which is typically called a block. The block size is 512 bytes on most disk drives. Disk drives and RAM are typical
parts of a computer’s memory hierarchy.
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disk 1/0

Refers to the act of reading data from or writing data to a disk drive. All disk reads and writes are done in units of a
sector or block.

disk-based space/time tradeoff

In contrast to the standard space/time tradeoff, this principle states that the smaller you can make your disk storage
requirements, the faster your program will run. This is because the time to read information from disk is enormous
compared to computation time, so almost any amount of additional computation needed to unpack the data is going to
be less than the disk-reading time saved by reducing the storage requirements.

distance
In graph representations, a synonym for weight.

divide and conquer

A technique for designing algorithms where a solution is found by breaking the problem into smaller (similar)
subproblems, solving the subproblems, then combining the subproblem solutions to form the solution to the original
problem. This process is often implemented using recursion.

divide-and-conquer recurrences
A common form of recurrence relation that have the form

T(n) = aT(n/b) + cn®; T(1)=c

where a, b, ¢, and k are constants. In general, this recurrence describes a problem of size n divided into a
subproblems of size n/b, while en” is the amount of work necessary to combine the partial solutions.

divide-and-guess

A technique for finding a closed-form solution to a summation or recurrence relation.

domain
The set of possible inputs to a function.

double buffering

The idea of using multiple buffers to allow the CPU to operate in parallel with a peripheral storage device. Once the
first buffer’s worth of data has been read in, the CPU can process this while the next block of data is being read from
the peripheral storage. For this idea to work, the next block of data to be processed must be known or predicted with
reasonable accuracy.

double hashing

A collision resolution method. A second hash function is used to generate a value c on the key. That value is then
used by this key as the step size in linear probing by steps. Since different keys use different step sizes (as
generated by the second hash function), this process avoids the clustering caused by standard linear probing by
steps.

double rotation
A type of rebalancing operation used by the Splay Tree and AVL Tree.

doubly linked list

A linked list implementation variant where each list node contains access pointers to both the previous element and
the next element on the list.
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DSA
Abbreviation for Data Structures and Algorithms.

dynamic
Something that is changes (in contrast to static). In computer programming, dynamic normally refers to something
that happens at run time. For example, run-time analysis is analysis of the program’s behavior, as opposed to its
(static) text or structure Dynamic binding or dynamic memory allocation occurs at run time.

dynamic allocation

The act of creating an object from free store. In C++, Java, and JavaScript, this is done using the new operator.

dynamic array

Arrays, once allocated, are of fixed size. A dynamic array puts an interface around the array so as to appear to allow
the array to grow and shrink in size as necessary. Typically this is done by allocating a new copy, copying the contents
of the old array, and then returning the old array to free store. If done correctly, the amortized cost for dynamically
resizing the array can be made constant. In some programming languages such as Java, the term vector is used as a
synonym for dynamic array.

dynamic memory allocation

A programming technique where linked objects in a data structure are created from free store as needed. When no
longer needed, the object is either returned to free store or left as garbage, depending on the programming language.

dynamic programming
An approach to designing algorithms that works by storing a table of results for subproblems. A typical cause for
excessive cost in recursive algorithms is that different branches of the recursion might solve the same subproblem.
Dynamic programming uses a table to store information about which subproblems have already been solved, and
uses the stored information to immediately give the answer for any repeated attempts to solve that subproblem.

edge
The connection that links two nodes in a tree, linked list, or graph.

edit distance

Given strings S and T, the edit distance is a measure for the number of editing steps required to convert S into 7.

efficient

A solution is said to be efficient if it solves the problem within the required resource constraints. A solution is
sometimes said to be efficient if it requires fewer resources than known alternatives, regardless of whether it meets
any particular requirements.

element

One value or member in a set.

empirical comparison

An approach to comparing to things by actually seeing how they perform. Most typically, we are referring to the
comparison of two programs by running each on a suite of test data and measuring the actual running times. Empirical
comparison is subject to many possible complications, including unfair selection of test data, and inaccuracies in the
time measurements due to variations in the computing environment between various executions of the programs.

empty
For a container class, the state of containing no eleme?r)gg.



encapsulation

In programming, the concept of hiding implementation details from the user of an ADT, and protecting data members
of an object from outside access.

enqueue
A specialized term used to indicate inserting an element onto a queue.

entry-sequenced file
A file that stores records in the order that they were added to the file.

enumeration

The process by which a traversal lists every object in the container exactly once. Thus, a traversal that prints the
nodes is said to enumerate the nodes. An enumeration can also refer to the actual listing that is produced by the
traversal (as well as the process that created that listing).

equidistribution property
In random number theory, this means that a given series of random numbers cannot be described more briefly than
simply listing it out.

equivalence class
An equivalence relation can be used to partition a set into equivalence classes.

equivalence relation

Relation R is an equivalence relation on set S if it is reflexive, symmetric, and transitive.

estimation

As a technical skill, this is the process of generating a rough estimate in order to evaluate the feasibility of a proposed
solution. This is sometimes known as “back of the napkin” or “back of the envelope” calculation. The estimation
process can be formalized as (1) determine the major parameters that affect the problem, (2) derive an equation that
relates the parameters to the problem, then (3) select values for the parameters and apply the equation to yield an
estimated solution.

evaluation
The act of finding the value for a polynomial at a given point.

exact-match query
Records are accessed by unique identifier.

exceptions
Exceptions are techniques used to predict possible runtime errors and handle them properly.

exchange
A swap of adjacent records in an array.

exchange sort

A sort that relies solely on exchanges (swaps of adjacent records) to reorder the list. Insertion Sort and Bubble Sort
are examples of exchange sorts. All exchange sorts require ©(n?) time in the worst case.

expanding the recurrence
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A technique for solving a recurrence relation. The idea is to replace the recursive part of the recurrence with a copy
of recurrence.

exponential growth rate
A growth rate function where n (the input size) appears in the exponent. For example, 2m.

expression tree
A tree structure meant to represent a mathematical expression. Internal nodes of the expression tree are operators in
the expression, with the subtrees being the sub-expressions that are its operand. All leaf nodes are operands.

extent

A physically contiguous block of sectors on a disk drive that are all part of a given disk file. The fewer extents needed
to store the data for a disk file, generally the fewer seek operations that will be required to process a series of disk
access operations on that file.

external fragmentation

A condition that arises when a series of memory requests result in lots of small free blocks, no one of which is useful
for servicing typical requests.

external sort

A sorting algorithm that is applied to data stored in peripheral storage such as on a disk drive. This is in contrast to
an internal sort that works on data stored in main memory.

factorial
The factorial function is defined as f(n) = nf(n — 1) for n > 0.

failure policy
In a memory manager, a failure policy is the response that takes place when there is no way to satisfy a memory
request from the current free blocks in the memory pool. Possibilities include rejecting the request, expanding the
memory pool, collecting garbage, and reorganizing the memory pool (to collect together free space).

family of languages

Given some class or type of finite automata (for example, the deterministic finite automata), the set of languages
accepted by that class of finite automata is called a family. For example, the regular languages is a family defined by
the DFAs.

FIFO

Abbreviation for “first-in, first-out”. This is the access paradigm for a queue, and an old terminology for the queue is
“FIFO list”.

file allocation table

A legacy file system architecture orginially developed for DOS and then used in Windows. It is still in use in many
small-scale peripheral devices such as USB memory sticks and digital camera memory.

file manager

A part of the operating system responsible for taking requests for data from a logical file and mapping those
requests to the physical location of the data on disk.

file processing
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The domain with Computer Science that deals with processing data stored on a disk drive (in a file), or more broadly,
dealing with data stored on any peripheral storage device. Two fundamental properties make dealing with data on a
peripheral device different from dealing with data in main memory: (1) Reading/writing data on a peripheral storage
device is far slower than reading/writing data to main memory (for example, a typical disk drive is about a million times
slower than RAM). (2) All I/O to a peripheral device is typically in terms of a block of data (for example, nearly all disk
drives do all I/O in terms of blocks of 512 bytes).

file structure

The organization of data on peripheral storage, such as a disk drive or DVD drive.

final state

A required element of any acceptor. When computation on a string ends in a final state, then the machine accepts the
string. Otherwise the machine rejects the string.

FIND

One half of the UNION/FIND algorithm for managing disjoint sets. It is the process of moving upwards in a tree to find
the tree’s root.

Finite State Acceptor

A simple type of finite state automata, an acceptor’s only ability is to accept or reject a string. So, a finite state
acceptor does not have the ability to modify the input tape. If computation on the string ends in a final state, then the
the string is accepted, otherwise it is rejected.

Finite State Machine
FSM

Finite State Automata
FSA

Finite Automata

Any abstract state machine, generally represented as a graph where the nodes are the states, and the edges
represent transitions between nodes that take place when the machine is in that node (state) and sees an appropriate
input. See, as an example, Deterministic Finite Automata.

first fit

In a memory manager, first fit is a heuristic for deciding which free block to use when allocating memory from a
memory pool. First fit will always allocate the first free block on the free block list that is large enough to service the
memory request. The advantage of this approach is that it is typically not necessary to look at all free blocks on the
free block list to find a suitable free block. The disadvantage is that it is not “intelligently” selecting what might be a
better choice of free block.

fixed-length coding

Given a collection of objects, a fixed-length coding scheme assigns a code to each object in the collection using codes
that are all of the same length. Standard ASCIlI and Unicode representations for characters are both examples of
fixed-length coding schemes. This is in contrast to variable-length coding.

floor

Written |z], for real value z the floor is the greatest integer < z.

Floyd’s algorithm
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An algorithm to solve the all-pairs shortest paths problem. It uses the dynamic programming algorithmic
technique, and runs in ©(n?) time. As with any dynamic programming algorithm, the key issue is to avoid duplicating
work by using proper bookkeeping on the algorithm’s progress through the solution space. The basic idea is to first
find all the direct edge costs, then improving those costs by allowing paths through vertex 0, then the cheapest paths
involving paths going through vertices 0 and 1, and so on.

flush

The act of removing data from a cache, most typically because other data considered of higher future value must
replace it in the cache. If the data being flushed has been modified since it was first read in from secondary storage
(and the changes are meant to be saved), then it must be written back to that secondary storage.

flush

The the context of a buffer pool, the process of removing the contents stored in a buffer when that buffer is required
in order to store new data. If the buffer's contents have been changed since having been read in from backing
storage (this fact would normally be tracked by using a dirty bit), then they must be copied back to the backing
storage before the buffer can be reused.

flyweight

A design pattern that is meant to solve the following problem: You have an application with many objects. Some of
these objects are identical in the information that they contain, and the role that they play. But they must be reached
from various places, and conceptually they really are distinct objects. Because there is so much duplication of the
same information, we want to reduce memory cost by sharing that space. For example, in document layout, the letter
“C” might be represented by an object that describes that character’s strokes and bounding box. However, we do not
want to create a separate “C” object everywhere in the document that a “C” appears. The solution is to allocate a
single copy of the shared representation for “C” objects. Then, every place in the document that needs a “C” in a given
font, size, and typeface will reference this single copy. The various instances of references to a specific form of “C”
are called flyweights. Flyweights can also be used to implement the empty leaf nodes of the bintree and PR
quadtree.

folding method

In hashing, an approach to implementing a hash function. Most typically used when the key is a string, the folding
method breaks the string into pieces (perhaps each letter is a piece, or a small series of letters is a piece), converts
the letter(s) to an integer value (typically by using its underlying encoding value), and summing up the pieces.

Ford and Johnson sort

A sorting algorithm that is close to the theoretical minimum number of key comparisons necessary to sort. Generally
not considered practical in practice due to the fact that it is not efficient in terms of the number of records that need to
be moved. It consists of first sorting pairs of nodes into winners and losers (of the pairs comparisons), then
(recursively) sorting the winners of the pairs, and then finally carefully selecting the order in which the losers are added
to the chain of sorted items.

forest
A collection of one or more trees.

free block
A block of unused space in a memory pool.

free block list

In a memory manager, the list that stores the necessary information about the current free blocks. Generally, this is
done with some sort of linked list, where each node of4t8§ linked list indicates the start position and length of the free



block in the memory pool.

free store

Space available to a program during runtime to be used for dynamic allocation of objects. The free store is distinct
from the runtime stack. The free store is sometimes referred to as the heap, which can be confusing because heap
more often refers to a specific data structure. Most programming languages provide functions to allocate (and maybe
to deallocate) objects from the free store, such as new in C++ and Java.

free tree

A connected, undirected graph with no simple cycles. An equivalent definition is that a free tree is connected and has
|V| — 1 edges.

freelist

A simple and faster alternative to using free store when the objects being dynamically allocated are all of the same
size (and thus are interchangeable). Typically implemented as a linked stack, released objects are put on the front of
the freelist. When a request is made to allocate an object, the freelist is checked first and it provides the object if
possible. If the freelist is empty, then a new object is allocated from free store.

frequency count

A heuristic used to maintain a self-organizing list. Under this heuristic, a count is maintained for every record. When
a record access is made, its count is increased. If this makes its count greater than that of another record in the list, it
moves up toward the front of the list accordingly so as to keep the list sorted by frequency. Analogous to the least
frequently used heuristic for maintaining a buffer pool.

full binary tree theorem

This theorem states that the number of leaves in a non-empty full binary tree is one more than the number of internal
nodes. Equivalently, then number of null pointers in a standard pointer-based implementation for binary tree nodes
is one more than the number of nodes in the binary tree.

full tree
A binary tree is full if every node is either a leaf node or else it is an internal node with two non-empty children.

function

In mathematics, a matching between inputs (the domain) and outputs (the range). In programming, a subroutine that
takes input parameters and uses them to compute and return a value. In this case, it is usually considered bad
practice for a function to change any global variables (doing so is called a side effect).

garbage
In memory management, any memory that was previously (dynamically) allocated by the program during runtime, but
which is no longer accessible since all pointers to the memory have been deleted or overwritten. In some languages,
garbage can be recovered by garbage collection. In languages such as C and C++ that do not support garbage
collection, so creating garbage is considered a memory leak.

garbage collection

Languages with garbage collection such Java, JavaScript, Lisp, and Scheme will periodically reclaim garbage and
return it to free store.

general tree

A tree in which any given node can have any number of children. This is in contrast to, for example, a binary tree
where each node has a fixed number of children (some of which might be null). General tree nodes tend to be harder
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to implement for this reason.

grammar
A formal definition for what strings make up a language, in terms of a set of production rules.

graph
A graph G = (V,E) consists of a set of vertices V and a set of edges E, such that each edge in E is a connection
between a pair of vertices in V.

greedy algorithm
An algorithm that makes locally optimal choices at each step.

growth rate
In algorithm analysis, the rate at which the cost of the algorithm grows as the size of its input grows.

guess-and-test
A technique used when trying to determine the closed-form solution for a summation or recurrence relation. Given
a hypothesis for the closed-form solution, if it is correct, then it is often relatively easy to prove that using induction.

guided traversal
A tree traversal that does not need to visit every node in the tree. An example would be a range query in a BST.

halt state
In a finite automata, a designated state which causes the machine to immediately halt when it is entered.

halted configuration
A halted configuration occurs in a Turing machine when the machine transitions into the halt state.

halting problem

The halting problem is to answer this question: Given a computer program P and an input I, will program P halt when
executed on input I? This problem has been proved impossible to solve in the general case. Thus, it is an example of
an unsolveable problem.

handle

When using a memory manager to store data, the client will pass data to be stored (the message) to the memory
manager, and the memory manager will return to the client a handle. The handle encodes the necessary information
that the memory manager can later use to recover and return the message to the client. This is typically the location
and length of the message within the memory pool.

hanging configuration
A hanging configuration occurs in a Turing machine when the /O head moves to the left from the left-most square of
the tape, or when the machine goes into an infinite loop.

hard algorithm

“Hard” is traditionally defined in relation to running time, and a “hard” algorithm is defined to be an algorithm with
exponential running time.

hard problem

“Hard” is traditionally defined in relation to running time, and a “hard” problem is defined to be one whose best known

algorithm requires exponential running time.
404



harmonic series

The sum of reciprocals from 1 to n is called the Harmonic Series, and is written #,. This sum has a value between
log.,n and log,n + 1.

hash function

In a hash system, the function that converts a key value to a position in the hash table. The hope is that this position
in the hash table contains the record that matches the key value.

hash system

The implementation for search based on hash lookup in a hash table. The search key is processed by a hash
function, which returns a position in a hash table, which hopefully is the correct position in which to find the record
corresponding to the search key.

hash table
The data structure (usually an array) that stores data records for lookup using hashing.

hashing

A search method that uses a hash function to convert a search key value into a position within a hash table. In a
properly implemented hash system, that position in the table will have high probability of containing the record that
matches the key value. Sometimes, the hash function will return an position that does not store the desired key, due to
a process called collision. In that case, the desired record is found through a process known as collision resolution.

head
The beginning of a list.

header node

Commonly used in implementations for a linked list or related structure, this node preceeds the first element of the
list. Its purpose is to simplify the code implementation by reducing the number of special cases that must be
programmed for.

heap

This term has two different meanings. Uncommonly, it is a synonym for free store. Most often it is used to refer to a
particular data structure. This data structure is a complete binary tree with the requirement that every node has a
value greater than its children (called a max heap), or else the requirement that every node has a value less than its
children (called a min heap). Since it is a complete binary tree, a heap is nearly always implemented using an array
rather than an explicit tree structure. To add a new value to a heap, or to remove the extreme value (the max value in
a max-heap or min value in a min-heap) and update the heap, takes ©(logn) time in the worst case. However, if given
all of the values in an unordered array, the values can be re-arranged to form a heap in only ©(n) time. Due to its
space and time efficiency, the heap is a popular choice for implementing a priority queue.

heapsort

A sorting algorithm that costs ©(nlogn) time in the best, average, and worst cases. It tends to be slower than
Mergesort and Quicksort. It works by building a max heap, and then repeatedly removing the item with maximum
key value (moving it to the end of the heap) until all elements have been removed (and replaced at their proper
location in the array).

height

The height of a tree is one more than the depth of the deepest node in the tree.

height balanced
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The condition the depths of each subtree in a tree are roughly the same.

heuristic

A way to solve a problem that is not guarenteed to be optimal. While it might not be guarenteed to be optimal, it is
generally expected (by the agent employing the heuristic) to provide a reasonably efficient solution.

heuristic algorithm

A type of approximation algorithm, that uses a heuristic to find a good, but not necessarily cheapest, solution to an
optimization problem.

home position
In hashing, a synonym for home slot.

home slot

In hashing, this is the slot in the hash table determined for a given key by the hash function.

homogeneity

In a container class, this is the property that all objects stored in the ncontainer are of the same class. For example, if
you have a list intended to store Payroll records, is it possible for the programmer to insert an integer onto the list
instead?

Huffman codes

The codes given to a collection of letters (or other symbols) through the process of Huffman coding. Huffman coding
uses a Huffman coding tree to generate the codes. The codes can be of variable length, such that the letters which
are expected to appear most frequently are shorter. Huffman coding is optimal whenever the true frequencies are
known, and the frequency of a letter is independent of the context of that letter in the message.

Huffman coding tree

A Huffman coding tree is a full binary tree that is used to represent letters (or other symbols) efficiently. Each letter is
associated with a node in the tree, and is then given a Huffman code based on the position of the associated node. A
Huffman coding tree is an example of a binary trie.

Huffman tree

Shorter form of the term Huffman coding tree.

1/0 head

On a disk drive (or similar device), the part of the machinery that actually reads data from the disk.

image-space decomposition
A from of key-space decomposition where the key space splitting points is predetermined (typically by splitting in
half). For example, a Huffman coding tree splits the letters being coded into those with codes that start with 0 on the
left side, and those with codes that start with 1 on the right side. This regular decomposition of the key space is the
basis for a trie data structure. An image-space decomposition is in opposition to an object-space decomposition.

in degree

In graph terminology, the in degree for a vertex is the number of edges directed into the vertex.

incident

In graph terminology, an edge connecting two vertices is said to be incident with those vertices. The two vertices are

said to be adjacent.
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index file

A file whose records consist of key-value pairs where the pointers are referencing the complete records stored in
another file.

indexing
The process of associating a search key with the location of a corresponding data record. The two defining points to
the concept of an index is the association of a key with a record, and the fact that the index does not actually store the
record itself but rather it stores a reference to the record. In this way, a collection of records can be supported by
multiple indices, typically a separate index for each key field in the record.

induction hypothesis

The key assumption used in a proof by induction, that the theorem to be proved holds for smaller instances of the
theorem. The induction hypothesis is equivalent to the recursive call in a recursive function.

induction step

Part of a proof by induction. In its simplest form, this is a proof of the implication that if the theorem holds for n — 1,
then it holds for n. As an alternative, see strong induction.

induction variable

The variable used to parameterize the theorem being proved by induction. For example, if we seek to prove that the
sum of the integers from 1 to n is n(n + 1)/2, then n is the induction variable. An induction variable must be an integer.

information theoretic lower bound

A lower bound on the amount of resources needed to solve a problem based on the number of bits of information
needed to uniquely specify the answer. Sometimes referred to as a “Shannon theoretic lower bound” due to Shannon’s
work on information theory and entropy. An example is that sorting has a lower bound of Q(log, n!) because there are
n! possible orderings for n values. This observation alone does not make the lower bound tight, because it is possible
that no algorithm could actually reach the information theory lower limit.

inherit
In object-oriented programming, the process by which a subclass gains data members and methods from a base
class.

initial state
A synonym for start state.

inode

Short for “index node”. In UNIX-style file systems, specific disk sectors that hold indexing information to define the
layout of the file system.

inorder traversal

In a binary tree, a traversal that first recursively visits the left child, then visits the root, and then recursively visits
the right child. In a binary search tree, this traversal will enumerate the nodes in sorted order.

Insertion Sort

A sorting algorithm with ©(n?) average and worst case cost, and Theta(n) best case cost. This best case cost
makes it useful when we have reason to expect the input to be nearly sorted.

instance variable

In object-oriented programming, a synonym for data zr(lﬁmber.



integer function

Any function whose input is an integer and whose output is an integer. It can be proved by diagonalization that the
set of integer functions is uncountably infinite.

inter-sector gap

On a disk drive, a physical gap in the data that occurs between the sectors. This allows the I/O head detect the end of
the sector.

interface

An interface is a class-like structure that only contains method signatures and fields. An interface does not contain an
implementation of the methods or any data members.

intermediate code

A step in a typical compiler is to transform the original high-level language into a form on which it is easier to do other
stages of the process. For example, some compilers will transform the original high-level source code into assembly
code on which it can do code optimization, before translating it into its final executable form.

intermediate code generation
A phase in a compiler, that walks through a parse tree to produce simple assembly code.

internal fragmentation

A condition that occurs when more than m bytes are allocated to service a memory request for m bytes, wasting free
storage. This is often done to simplify memory management.

internal node
In a tree, any node that has at least one non-empty child is an internal node.

internal sort

A sorting algorithm that is applied to data stored in main memory. This is in contrast to an external sort that is meant
to work on data stored in peripheral storage such as on a disk drive.

interpolation

The act of finding the coefficients of a polynomial, given the values at some points. A polynomal of degree n —1
requires n points to interpolate the coefficients.

interpolation search

Given a sorted array, and knowing the first and last key values stored in some subarray known to contain search key
K, interpolation search will compute the expected location of K in the subarray as a fraction of the distance between
the known key values. So it will next check that computed location, thus narrowing the search for the next iteration.
Given reasonable key value distribution, the average case for interpolation search will be ©(loglogn), or better than
the expected cost of binary search. Nonetheless, binary search is expected to be faster in nearly all practical
situations due to the small difference between the two costs, combined with the higher constant factors required to
implement interpolation search as compared to binary search.

interpreter
In contrast to a compiler that translates a high-level program into something that can be repeatedly executed to
perform a computation, an interpreter directly performs computation on the high-level langauge. This tends to make
the computation much slower than if it were performed on the directly executable version produced by a compiler.

inversion
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A measure of how disordered a series of values is. For each element X in the series, count one inversion for each
element to left of X that is greater than the value of X (and so must ultimately be moved to the right of X during a
sorting process).

inverted file
Synonym for inverted list when the inverted list is stored in a disk file.

inverted list
An index which links secondary keys to either the associated primary key or the actual record in the database.

irreflexive
In set notation, binary relation R on set S is irreflexive if aRa is never in the relation for any a € S.

ISAM

Indexed Sequential Access Method: an obsolete method for indexing data for (at the time) fast retrieval. More
generally, the term is used also to generically refer to an index that supports both sequential and keyed access to
data records. Today, that would nearly always be implemented using a B-Tree.

iterator

In a container such as a List, a separate class that indicates position within the container, with support for traversing
through all elements in the container.

job
Common name for processes or tasks to be run by an operating system. They typically need to be processed in order
of importance, and so are kept organized by a priority queue. Another common use for this term is for a collection of
tasks to be ordered by a topological sort.

jump search

An algorithm for searching a sorted list, that falls between sequential search and binary search in both
computational cost and conceptual complexity. The idea is to keep jumping by some fixed number of positions until a
value is found that is bigger than search key K, then do a sequential search over the subarray that is now known to
contain the search key. The optimal number of steps to jump will be /n for an array of size n, and the worst case cost
will be ©(y/n).

K-ary tree
A type of full tree where every internal node has exactly K children.

k-path
In Floyd’s algorithm, a k-path is a path between two vertices ¢ and j that can only go through vertices with an index
value less than or equal to k.

kd tree

A spatial data structure that uses a binary tree to store a collection of data records based on their (point) location in
space. It uses the concept of a discriminator at each level to decide which single component of the multi-
dimensional search key to branch on at that level. It uses a key-space decomposition, meaning that all data
records in the left subtree of a node have a value on the corresponding discriminator that is less than that of the node,
while all data records in the right subtree have a greater value. The bintree is the image-space decomposition
analog of the kd tree.

key
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A field or part of a larger record used to represent that record for the purpose of searching or comparing. Another term
for search key.

key sort

Any sorting operation applied to a collection of key-value pairs where the value in this case is a reference to a
complete record (that is, a pointer to the record in memory or a position for a record on disk). This is in contrast to a
sorting operation that works directly on a collection of records. The intention is that the collection of key-value pairs is
far smaller than the collection of records themselves. As such, this might allow for an internal sort when sorting the
records directly would require an external sort. The collection of key-value pairs can also act as an index.

key space

The range of values that a key value may take on.

key-space decomposition

The idea that the range for a search key will be split into pieces. There are two general approaches to this: object-
space decomposition and image-space decomposition.

key-value pair

A standard solution for solving the problem of how to relate a key value to a record (or how to find the key for a given
record) within the context of a particular index. The idea is to simply store as records in the index pairs of keys and
records. Specifically, the index will typically store a copy of the key along with a reference to the record. The other
standard solution to this problem is to pass a comparator function to the index.

knapsack problem

While there are many variations of this problem, here is a typical version: Given knapsack of a fixed size, and a
collection of objects of various sizes, is there a subset of the objects that exactly fits into the knapsack? This problem
is known to be NP-complete, but can be solved for problem instances in practical time relatively quickly using
dynamic programming. Thus, it is considered to have pseudo-polynomial cost. An optimization problem version
is to find the subset that can fit with the greatest amount of items, either in terms of their total size, or in terms of the
sum of values associated with each item.

Kruskal’s algorithm

An algorithm for computing the MCST of a graph. During processing, it makes use of the UNION/FIND process to
efficiently determine of two vertices are within the same subgraph.

labeled graph

A graph with labels associated with the nodes.

language

A set of strings.

Las Vegas algorithms

A form of randomized algorithm. We always find the maximum value, and “usually” we find it fast. Such algorithms
have a guaranteed result, but do not guarantee fast running time.

leaf node

In a binary tree, leaf node is any node that has two empty children. (Note that a binary tree is defined so that every
node has two children, and that is why the leaf node has to have two empty children, rather than no children.) In a
general tree, any node is a leaf node if it has no children.
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least frequently used

Abbreviated LFU, it is a heuristic that can be used to decide which buffer in a buffer pool to flush when data in the
buffer pool must be replaced by new data being read into a cache. However, least recently used is more popular
than LFU. Analogous to the frequency count heuristic for maintaining a self-organizing list.

least recently used

Abbreviated LRU, it is a popular heuristic to use for deciding which buffer in a buffer pool to flush when data in the
buffer pool must be replaced by new data being read into a cache. Analogous to the move-to-front heuristic for
maintaining a self-organizing list.

left recursive

In automata theory, a production is left recursive if it is of the form A — Az, A € V,z € (V UT)* where V is the set of
non-terminals and T is the set of terminals in the grammar.

length
In a list, the number of elements. In a string, the number of characters.

level
In a tree, all nodes of depth d are at level d in the tree. The root is the only node at level 0, and its depth is 0.

lexical analysis

A phase of a compiler or interpreter responsible for reading in characters of the program or language and grouping
them into tokens.

lexical scoping

Within programming languages, the convention of allowing access to a variable only within the block of code in which
the variable is defined. A synonym for static scoping.

LFU
Abbreviation for least frequently used.

lifetime
For a variable, lifetime is the amount of time it will exist before it is destroyed.

LIFO

Abbreviation for “Last-In, First-Out”. This is the access paradigm for a stack, and an old terminolgy for the stack is
“LIFO list”.

linear congruential method
In random number theory, a process for computing the next number in a pseudo-random sequence. Starting from a

seed, the next term r(7) in the series is calculated from term r(i — 1) by the equation

r(i) = (r(¢ — 1) x b) mod ¢

where b and t are constants. These constants must be well chosen for the resulting series of numbers to have
desireable properties as a random number sequence.

linear growth rate

For input size n, a growth rate of cn (for ¢ any positive constant). In other words, the cost of the associated function is
linear on the input size.
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linear index

A form of indexing that stores key-value pairs in a sorted array. Typically this is used for an index to a large collection
of records stored on disk, where the linear index itself might be on disk or in main memory. It allows for efficient
search (including for range queries), but it is not good for inserting and deleting entries in the array. Therefore, it is an
ideal indexing structure when the system needs to do range queries but the collection of records never changes once
the linear index has been created.

linear order

Another term for total order.

linear probing

In hashing, this is the simplest collision resolution method. Term i of the probe sequence is simply ¢, meaning that
collision resolution works by moving sequentially through the hash table from the home slot. While simple, it is also
inefficient, since it quickly leads to certain free slots in the hash table having higher probability of being selected
during insertion or search.

linear probing by steps
In hashing, this collision resolution method is a variation on simple linear probing. Some constant c is defined such
that term ¢ of the probe sequence is ci. This means that collision resolution works by moving sequentially through the
hash table from the home slot in steps of size ¢. While not much improvement on linear probing, it forms the basis of
another collision resolution method called double hashing, where each key uses a value for ¢ defined by a second
hash function.

linear search
Another name for sequential search.

link node

A widely used supporting object that forms the basic building block for a linked list and similar data structures. A link
node contains one or more fields that store data, and a pointer or reference to another link node.

linked list

An implementation for the list ADT that uses dynamic allocation of link nodes to store the list elements. Common
variants are the singly linked list, doubly linked list and circular list. The overhead required is the pointers in each
link node.

linked stack

Analogous to a linked list, this uses dynamic allocation of nodes to store the elements when implementing the stack
ADT.

list
A finite, ordered sequence of data items known as elements. This is close to the mathematical concept of a

sequence. Note that “ordered” in this definition means that the list elements have position. It does not refer to the
relationship between key values for the list elements (that is, “ordered” does not mean “sorted”).

literal

In a Boolean expression, a literal is a Boolean variable or its negation. In the context of compilers, it is any constant
value. Similar to a terminal.

load factor
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In hashing this is the fraction of the hash table slots that contain a record. Hash systems usually try to keep the load
factor below 50%.

local storage
local storage.

local variable

A variable declared within a function or method. It exists only from the time when the function is called to when the
function exits. When a function is suspended (due to calling another function), the function’s local variables are stored
in an activation record on the runtime stack.

locality of reference

The concept that accesses within a collection of records is not evenly distributed. This can express itself as some
small fraction of the records receiving the bulk of the accesses (80/20 rule). Alternatively, it can express itself as an
increased probability that the next or future accesses will come close to the most recent access. This is the
fundamental property for success of caching.

logarithm
The logarithm of base b for value y is the power to which b is raised to get y.

logical file
In file processing, the programmer’s view of a random access file stored on disk as a contiguous series of bytes,
with those bytes possibly combining to form data records. This is in contrast to the physical file.

logical form
The definition for a data type in terms of an ADT. Contrast to the physical form for the data type.

lookup table
A table of pre-calculated values, used to speed up processing time when the values are going to be viewed many
times. The costs to this approach are the space required for the table and the time required to compute the table. This
is an example of a space/time tradeoff.

lower bound
In algorithm analysis, a growth rate that is always less than or equal to the growth rate of the algorithm in question.
In practice, this is the fastest-growing function that we know grows no faster than all but a constant number of inputs. It
could be a gross under-estimate of the truth. Since the lower bound for the algorithm can be very different for different
situations (such as the best case or worst case), we typically have to specify which situation we are referring to.

lower bounds proof

A proof regarding the lower bound, with this term most typically referring to the lower bound for any possible algorithm
to solve a given problem. Many problems have a simple lower bound based on the concept that the minimum amount
of processing is related to looking at all of the problem’s input. However, some problems have a higher lower bound
than that. For example, the lower bound for the problem of sorting (Q(nlogn)) is greater than the input size to sorting (
n). Proving such “non-trivial” lower bounds for problems is notoriously difficult.

LRU
Abbreviation for least recently used.

main memory

A synonym for primary storage. In a computer, typically this will be RAM.
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map
A data structure that relates a key to a record.

mapping
A function that maps every element of a given set to a unique element of another set; a correspondence.

mark array

It is typical in graph algorithms that there is a need to track which nodes have been visited at some point in the
algorithm. An array of bits or values called the mark array is often maintained for this purpose.

mark/sweep algorithm

An algorithm for garbage collection. All accessible variables, and any space that is reachable by a chain of pointers
from any accessible variable, is “marked”. Then a sequential sweep of all memory in the pool is made. Any unmarked
memory locations are assumed to not be needed by the program and can be considered as free to be reused.

master theorem
A theorem that makes it easy to solve divide-and-conquer recurrences.

matching
In graph theory, a pairing (or match) of various nodes in a graph.

matching problem

Any problem that involves finding a matching in a graph with some desired property. For example, a well-known NP-
complete problem is to find a maximum match for an undirected graph.

max heap

A heap where every node has a key value greater than its children. As a consequence, the node with maximum key
value is at the root.

maximal match

In a graph, any matching that leaves no pair of unmatched vertices that are connected. A maximal matching is not
necessarily a maximum match. In other words, there might be a larger matching than the maximal matching that was
found.

maximum lower bound
The lower bound for the problem of finding the maximum value in an unsorted list is Q(n).

maximum match
In a graph, the largest possible matching.

MCST
MST

Abbreviation for minimal-cost spanning tree.

measure of cost

When comparing two things, such as two algorithms, some event or unit must be used as the basic unit of
comparison. It might be number of milliseconds needed or machine instructions expended by a program, but it is
usually desirable to have a way to do comparison between two algorithms without writing a program. Thus, some other
measure of cost might be used as a basis for comparison between the algorithms. For example, when comparing two
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sorting algorthms it is traditional to use as a measure of cost the number of comparisons made between the key
values of record pairs.

member

In set notation, this is a synonym for element. In abstract design, a data item is a member of a type. In an object-
oriented language, data members are data fields in an object.

member function
Each operation associated with the ADT is implemented by a member function or method.

memory allocation
In a memory manager, the act of honoring a request for memory.

memory deallocation
In a memory manager, the act of freeing a block of memory, which should create or add to a free block.

memory hierarchy

The concept that a computer system stores data in a range of storage types that range from fast but expensive
(primary storage) to slow but cheap (secondary storage). When there is too much data to store in primary storage,
the goal is to have the data that is needed soon or most often in the primary storage as much as possible, by using
caching techniques.

memory leak

In programming, the act of creating garbage. In languages such as C and C++ that do not support garbage
collection, repeated memory leaks will evenually cause the program to terminate.

memory manager

Functionality for managing a memory pool. Typically, the memory pool is viewed as an array of bytes by the memory
manager. The client of the memory manager will request a collection of (adjacent) bytes of some size, and release the
bytes for reuse when the space is no longer needed. The memory manager should not know anything about the
interpretation of the data that is being stored by the client into the memory pool. Depending on the precise
implementation, the client might pass in the data to be stored, in which case the memory manager will deal with the
actual copy of the data into the memory pool. The memory manager will return to the client a handle that can later be
used by the client to retrieve the data.

memory pool

Memory (usually in RAM but possibly on disk or peripheral storage device) that is logically viewed as an array of
memory positions. A memory pool is usually managed by a memory manager.

memory request

In a memory manager, a request from some client to the memory manager to reserve a block of memory and store
some bytes there.

merge insert sort
A synonym for the Ford and Johnson sort.

Mergesort

A sorting algorithm that requires ©(nlogn) in the best, average, and worst cases. Conceptually it is simple: Split the
list in half, sort the halves, then merge them together. It is a bit complicated to implement efficiently on an array.

415



message

In a memory manager implementation (particularly a memory manager implemented with a message passing style
of interface), the message is the data that the client of the memory manager wishes to have stored in the memory
pool. The memory manager will reply to the client by returning a handle that defines the location and size of the
message as stored in the memory pool. The client can later recover the message by passing the handle back to the
memory manager.

message passing
A common approach to implementing the ADT for a memory manager or buffer pool, where the contents of a
message to be stored is explicitly passed between the client and the memory manager. This is in contrast to a buffer
passing approach.

metaphor

Humans deal with complexity by assigning a label to an assembly of objects or concepts and then manipulating the
label in place of the assembly. Cognitive psychologists call such a label a metaphor.

method

In the object-oriented programming paradigm, a method is an operation on a class. A synonym for member
function.

mid-square method

In hashing, an approach to implementing a hash function. The key value is squared, and some number of bits from
the middle of the resulting value are extracted as the hash code. Some care must be taken to extract bits that tend to
actually be in the middle of the resulting value, which requires some understanding of the typical key values. When
done correctly, this has the advantage of having the hash code be affected by all bits of the key

min heap

A heap where every node has a key value less than its children. As a consequence, the node with minimum key
value is at the root.

minimal-cost spanning tree

Abbreviated as MCST, or sometimes as MST. Derived from a weighted graph, the MCST is the subset of the graph’s
edges that maintains the connectivitiy of the graph while having lowest total cost (as defined by the sum of the
weights of the edges in the MCST). The result is referred to as a tree because it would never have a cycle (since an
edge could be removed from the cycle and still preserve connectivity). Two algorithms to solve this problem are Prim’s
algorithm and Kruskal’s algorithm.

minimum external path weight

Given a collection of objects, each associated with a leaf node in a tree, the binary tree with minimum external path
weight is the one with the minimum sum of weighted path lengths for the given set of leaves. This concept is used to
create a Huffman coding tree, where a letter with high weight should have low depth, so that it will count the least
against the total path length. As a result, another letter might be pushed deeper in the tree if it has less weight.

mod
Abbreviation for the modulus function.

model

A simplification of reality that preserves only the essential elements. With a model, we can more easily focus on and
reason about these essentials. In algorithm analysis, we are especially concerned with the cost model for
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measuring the cost of an algorithm.

modulus

The modulus function returns the remainder of an integer division. Sometimes written n mod m in mathematical
expressions, the syntax in many programming languagesis n % m.

Monte Carlo algorithms

A form of randomized algorithm. We find the maximum value fast, or we don’t get an answer at all (but fast). While
such algorithms have good running time, their result is not guaranteed.

move-to-front

A heuristic used to maintain a self-organizing list. Under this heuristic, whenever a record is accessed it is moved to
the front of the list. Analogous to the least recently used heuristic for maintaining a buffer pool.

multi-dimensional search key

A search key containing multiple parts, that works in conjunction with a multi-dimensional search structure. Most
typically, a spatial search key representing a position in multi-dimensional (2 or 3 dimensions) space. But a multi-
dimensional key could be used to organize data within non-spatial dimensions, such as temperature and time.

multi-dimensional search structure

A data structure used to support efficient search on a multi-dimensional search key. The main concept here is that a
multi-dimensional search structure works more efficiently by considering the multiple parts of the search key as a
whole, rather than making independent searches on each one-dimensional component of the key. A primary example
is a spatial data structure that can efficiently represent and search for records in multi-dimensional space.

multilist
A list that may contain sublists. This term is sometimes used as a synonym to the term bag.

natural numbers
Zero and the positive integers.

necessary fallacy

A common mistake in a lower bounds proof for a problem, where the proof makes an inappropriate assumption that
any algorithm must operate in some manner (typically in the way that some known algorithm behaves).

neighbor
In a graph, a node w is said to be a neighbor of node v if there is an edge from v to w.

node

The objects that make up a linked structure such as a linked list or binary tree. Typically, nodes are allocated using
dynamic memory allocation. In graph terminology, the nodes are more commonly called vertices.

non-deterministic

In a finite automata, at least one state has multiple transitions on at least one symbol. This means that it is not
deterministic about what transition to take in that situation. A non-deterministic machine is said to accept a string if it
completes execution on the string in an accepting state under at least one choice of non-deterministic transitions.
Generally, non-determinism can be simulated with a deterministic machine by alternating between the execution that
would take place under each of the branching choices.

non-deterministic algorithm
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An algorithm that may operate using a non-deterministic choice operation.

non-deterministic choice

An operation that captures the concept of nondeterminism. A nondeterministic choice can be viewed as either
“correctly guessing” between a set of choices, or implementing each of the choices in parallel. In the parallel view, the
nondeterminism was successful if at least one of the choices leads to a correct answer.

non-deterministic polynomial time algorithm
An algorithm that runs in polynomial time, and which may (or might not) use non-deterministic choice.

non-strict partial order

In set notation, a relation that is reflexive, antisymmetric, and transitive.

non-terminal

In contrast to a terminal, a non-terminal is an abstract state in a production rule. Begining with the start symbol, all
non-terminals must be converted into terminals in order to complete a derivation.

NP

An abbreviation for non-deterministic polynomial.

NP-Complete

A class of problems that are related to each other in this way: If ever one such problem is proved to be solvable in
polynomial time, or proved to require exponential time, then all other NP-Complete problems will cost likewise. Since
so many real-world problems have been proved to be NP-Complete, it would be extremely useful to determine if they
have polynomial or exponential cost. But so far, nobody has been able to determine the truth of the situation. A more
technical definition is that a problem is NP-Complete if it is in NP and is NP-hard.

NP-Completeness proof

A type of reduction used to demonstrate that a particular problem is NP-complete. Specifically, an NP-
Completeness proof must first show that the problem is in class NP, and then show (by using a reduction to another
NP-Complete problem) that the problem is NP-hard.

NP-hard

A problem that is “as hard as” any other problem in NP. That is, Problem X is NP-hard if any algorithm in NP can be
reduced to X in polynomial time.

nth roots of unity
All of the points along the unit circle in the complex plane that represent multiples of the primitive nth root of unity.

object
An instance of a class, that is, something that is created and takes up storage during the execution of a computer

program. In the object-oriented programming paradigm, objects are the basic units of operation. Objects have state
in the form of data members, and they know how to perform certain actions (methods).

object-oriented programming paradigm
An approach to problem-solving where all computations are carried out using objects.

object-space decomposition

A from of key-space decomposition where the key space is determined by the actual values of keys that are found.

For example, a BST stores a key value in its root, and all other values in the tree with lesser value are in the left
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subtree. Thus, the root value has split (or decomposed) the key space for that key based on its value into left and
right parts. An object-space decomposition is in opposition to an image-space decomposition.

octree

The three-dimensional equivalent of the quadtree would be a tree with 23 or eight branches.

Omega notation

In algorithm analysis, Q notation is used to describe a lower bound. Roughly (but not completely) analogous to big-
Oh notation used to define an upper bound.

one-way list
A synonym for a singly linked list.

open addressing
A synonym for closed hashing.

open hash system

A hash system where multiple records might be associated with the same slot of a hash table. Typically this is done
using a linked list to store the records. This is in contrast to a closed hash system.

operating system
The control program for a computer. Its purpose is to control hardware, manage resources, and present a standard
interface to these to other software components.

optimal static ordering

A theoretical construct defining the best static (non-changing) order in which to place a collection of records so as to
minimize the number of records visited by a series of sequential searches. It is a useful concept for the purpose of
defining a theoretical optimum against which to compare the performance for a self-organizing list heuristic.

optimization problem

Any problem where there are a (typically large) collection of potential solutions, and the goal is to find the best
solution. An example is the Traveling Salesman Problem, where visiting n cities in some order has a cost, and the goal
is to visit in the cheapest order.

out degree
In graph terminology, the out degree for a vertex is the number of edges directed out of the vertex.

overflow

The condition where the amount of data stored in an entity has exceeded its capacity. For example, a node in a B-tree
can store a certain number of records. If a record is attempted to be inserted into a node that is full, then something
has to be done to handle this case.

overflow bucket
In bucket hashing, this is the bucket into which a record is placed if the bucket containing the record’s home slot is
full. The overflow bucket is logically considered to have infinite capacity, though in practice search and insert will
become relatively expensive if many records are stored in the overflow bucket.

overhead

All information stored by a data structure aside from the actual data. For example, the pointer fields in a linked list or

BST, or the unused positions in an array-based list.
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page
A term often used to refer to the contents of a single buffer within a buffer pool or other virtual memory. This
corresponds to a single block or sector of data from backing storage, which is the fundamental unit of 1/0.

parameter
The values making up an input to a function.

parent
In a tree, the node P that directly links to a node A is the parent of A. A is the child of P.

parent pointer representation

For trees, a node implementation where each node stores only a pointer to its parent, rather than to its children. This
makes it easy to go up the tree toward the root, but not down the tree toward the leaves. This is most appropriate for
solving the UNION/FIND problem.

parity
The concept of matching even-ness or odd-ness, the basic idea behind using a parity bit for error detection.

parity bit
A common method for checking if transmission of a sequence of bits has been performed correctly. The idea is to
count the number of 1 bits in the sequence, and set the parity bit to 1 if this number is odd, and 0 if it is even. Then,
the transmitted sequence of bits can be checked to see if its parity matches the value of the parity bit. This will catch
certain types of errors, in particular if the value for a single bit has been reversed. This was used, for example, in early
versions of ASCII character coding.

parse tree

A tree that represents the syntactic structure of an input string, making it easy to compare against a grammar to see if
it is syntactically correct.

parser

A part of a compiler that takes as input the program text (or more typically, the tokens from the scanner), and verifies
that the program is syntactically correct. Typically it will build a parse tree as part of the process.

partial order

In set notation, a binary relation is called a partial order if it is antisymmetric and transitive. If the relation is also
reflexive, then it is a non-strict partial order. Alternatively, if the relation is also irreflexive, then it is a strict partial
order.

partially ordered set
The set on which a partial order is defined is called a partially ordered set.

partition
In Quicksort, the process of splitting a list into two sublists, such that one sublist has values less than the pivot value,
and the other with values greater than the pivot. This process takes ©(7) time on a sublist of length i.

pass by reference
A reference to the variable is passed to the called function. So, any modifications will affect the original variable.

pass by value
A copy of a variable is passed to the called function. 8042a(31y modifications will not affect the original variable.



path

In tree or graph terminology, a sequence of vertices vy, vs,...,v, forms a path of length n — 1 if there exist edges from
v; tov;q for1 <i < n.

path compression

When implementing the UNION/FIND algorithm, path compression is a local optimization step that can be performed
during the FIND step. Once the root of the tree for the current object has been found, the path to the root can be
traced a second time, with all objects in the tree made to point directly to the root. This reduces the depth of the tree
from typically ©(logn) to nearly constant.

peripheral storage

Any storage device that is not part of the core processing of the computer (that is, RAM). A typical example is a disk
drive.

permutation
A permutation of a sequence S is the elements of S arranged in some order.

persistent

In the context of computer memory, this refers to a memory that does not lose its stored information when the power is
turned off.

physical file
The collection of sectors that comprise a file on a disk drive. This is in contrast to the logical file.

physical form
The implementation of a data type as a data structure. Contrast to the physical form for the data type.

Pigeonhole Principle

A commonly used lemma in Mathematics. A typical variant states: When n + 1 objects are stored in n locations, at
least one of the locations must store two or more of the objects.

pivot
In Quicksort, the value that is used to split the list into sublists, one with lesser values than the pivot, the other with
greater values than the pivot.

platter

In a disk drive, one of a series of flat disks that comprise the storage space for the drive. Typically, each surface (top
and bottom) of each platter stores data, and each surface has its own 1/0 head.

point quadtree

A spatial data structure for storing point data. It is similar to a PR quadtree in that it (in two dimensions) splits the
world into four parts. However, it splits using an object-space decomposition. That is, quadrant containing the point
is split into four parts at the point. It is similar to the kd tree which splits alternately in each dimension, except that it
splits in all dimensions at once.

point-region quadtree
Formal name for what is commonly referred to as a PR quadtree.

pointee
The term pointee refers to anything that is pointed to by4a2rointer or reference.



pointer
A variable whose value is the address of another variable; a link.

pointer-based implementation for binary tree nodes

A common way to implement binary tree nodes. Each node stores a data value (or a reference to a data value), and
pointers to the left and right children. If either or both of the children does not exist, then a null pointer is stored.

polymorphism
An object-oriented programming term meaning one name, many forms. It describes the ability of software to change
its behavior dynamically. Two basic forms exist: run-time polymorphism and compile-time polymorphism.

pop
A specialized term used to indicate removing an element from a stack.

poset
Another name for a partially ordered set.

position
The defining property of the list ADT, this is the concept that list elements are in a position. Many list ADTs support
access by position.

postorder traversal

In a binary tree, a traversal that first recursively visits the left child, then recursively visits the right child, and then
visits the root.

potential

A concept related to amortized analysis. Potential is the total or currently available amount of work that can be done.

powerset

For a set S, the power set is the set of all possible subsets for S.

PR quadtree

A type of quadtree that stores point data in two dimensions. The root of the PR quadtree represents some square
region of 2d space. If that space stores more than one data point, then the region is decomposed into four equal
subquadrants, each represented recursively by a subtree of the PR quadtree. Since many leaf nodes of the PR
quadtree will contain no data points, implementation often makes use of the Flyweight design pattern. Related to the
bintree.

prefix property
Given a collection of strings, the collection has the prefix property if no string in the collection is a prefix for another
string in the collection. The significance is that, given a long string composed of members of the collection, it can be
uniquely decomposed into the constituent members. An example of such a collection of strings with the prefix property
is a set of Huffman codes.

preorder traversal

In a binary tree, a traversal that first visits the root, then recursively visits the left child, then recursively visits the
right child.

Prim’s algorithm
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A greedy algorithm for computing the MCST of a graph. It is nearly identical to Dijkstra’s algorithm for solving the
single-source shortest paths problem, with the only difference being the calculation done to update the best-known
distance.

primary clustering

In hashing, the tendency in certain collision resolution methods to create clustering in sections of the hash table.
The classic example is linear probing. This tends to happen when a group of keys follow the same probe sequence
during collision resolution.

primary index
Synonym for primary key index.

primary key
A unique identifier for a record.

primary key index
Relates each primary key value with a pointer to the actual record on disk.

primary storage
The faster but more expensive memory in a computer, most often RAM in modern computers. This is in contrast to
secondary storage, which together with primary storage devices make up the computer’s memory hierarchy.

primitive data type
In Java, one of a particular group of simple types that are not implemented as objects. An example is an int.

primitive element

In set notation, this is a single element that is a member of the base type for the set. This is as opposed to an element
of the set being another set.

primitive nth root of unity

The n th root of 1. Normally a complex number. An intuitive way to view this is one n th of the unit circle in the
complex plain.

priority
A quantity assigned to each of a collection of jobs or tasks that indicate importance for order of processing. For
example, in an operating system, there could be a collection of processes (jobs) ready to run. The operating system
must select the next task to execute, based on their priorities.

priority queue
An ADT whose primary operations of insert of records, and deletion of the greatest (or, in an alternative
implementation, the least) valued record. Most often implemented using the heap data structure. The name comes
from a common application where the records being stored represent tasks, with the ordering values based on the
priorities of the tasks.

probabilistic algorithm
A form of randomized algorithm that might yield an incorrect result, or that might fail to produce a result.

probabilistic data structure
Any data structure that uses probabilistic algorithms to perform its operations. A good example is the skip list.
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probe function
In hashing, the function used by a collision resolution method to calculate where to look next in the hash table.

probe sequence
In hashing, the series of slots visited by the probe function during collision resolution.

problem
A task to be performed. It is best thought of as a function or a mapping of inputs to outputs.

problem instance

A specific selection of values for the parameters to a problem. In other words, a specific set of inputs to a problem. A
given problem instance has a size under some cost model.

problem lower bound

In algorithm analysis, the tightest lower bound that we can prove over all algorithms for that problem. This is often
much harder to determine than the problem upper bound. Since the lower bound for the algorithm can be very
different for different situations (such as the best case or worst case), we typically have to specify which situation we
are referring to.

problem upper bound

In algorithm analysis, the upper bound for the best algorithm that we know for the problem. Since the upper bound
for the algorithm can be very different for different situations (such as the best case or worst case), we typically have
to specify which situation we are referring to.

procedural

Typically referring to the procedural programming paradigm, in contrast to the object-oriented programming
paradigm.

procedural programming paradigm

Procedural programming uses a list of instructions (and procedure calls) that define a series of computational steps to
be carried out. This is in contrast to the object-oriented programming paradigm.

production

production rule
A grammar is comprised of production rules. The production rules consist of terminals and non-terminals, with one
of the non-terminals being the start symbol. Each production rule replaces one or more non-terminals (perhaps with
associated terminals) with one or more terminals and non-terminals. Depending on the restrictions placed on the form
of the rules, there are classes of languages that can be represented by specific types of grammars. A derivation is a
series of productions that results in a string (that is, all non-terminals), and this derivation can be represented as a
parse tree.

program
An instance, or concrete representation, of an algorithm in some programming language.

promotion
In the context of certain balanced tree structures such as the 2-3 tree, a promotion takes place when an insertion
causes the node to overflow. In the case of the 2-3 tree, the key with the middlemost value is sent to be stored in the
parent.

roof
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The establishment of the truth of anything, a demonstration.

proof by contradiction

A mathematical proof technique that proves a theorem by first assuming that the theorem is false, and then uses a
chain of reasoning to reach a logical contradiction. Since when the theorem is false a logical contradiction arises, the
conclusion is that the theorem must be true.

proof by induction

A mathematical proof technique similar to recursion. It is used to prove a parameterized theorem S(n), that is, a
theorem where there is a induction variable involved (such as the sum of the numbers from 1 to n). One first proves
that the theorem holds true for a base case, then one proves the implication that whenever S(n) is true then S(n + 1)
is also true. Another variation is strong induction.

proving the contrapositive
We can prove that P = @Q by proving (not Q) = (not P).

pseudo polynomial

In complexity analysis, refers to the time requirements of an algorithm for an NP-Complete problem that still runs
acceptably fast for practical application. An example is the standard dynamic programming algorithm for the
knapsack problem.

pseudo random

In random number theory this means that, given all past terms in the series, no future term of the series can be
accurately predicted in polynomial time.

pseudo-random probing

In hashing, this is a collision resolution method that stores a random permutation of the values 1 through the size of
the hash table. Term i of the probe sequence is simply the value of position ¢ in the permuation.

push
A specialized term used to indicate inserting an element onto a stack.

pushdown automata
PDA

A type of Finite State Automata that adds a stack memory to the basic Deterministic Finite Automata machine.
This extends the set of languages that can be recognize to the context-free languages.

quadratic growth rate
A growth rate function of the form cn? where n is the input size and c is a constant.

quadratic probing

In hashing, this is a collision resolution method that computes term i of the probe sequence using some quadratic
equation aigi + ¢ for suitable constants a, b, c. The simplest form is simply to use i? as term i of the probe sequence.

quadtree
A full tree where each internal node has four children. Most typically used to store two dimensional spatial data.
Related to the bintree. The difference is that the quadtree splits all dimensions simultaneously, while the bintree splits
one dimension at each level. Thus, to extend the quadtree concept to more dimensions requires a rapid increase in
the number of splits (for example, 8 in three dimensions).
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queue
A list-like structure in which elements are inserted only at one end, and removed only from the other one end.

Quicksort

A sort that is ©(nlogn) in the best and average cases, though ©(n?) in the worst case. However, a reasonable
implmentation will make the worst case occur under exceedingly rare circumstances. Due to its tight inner loop, it
tends to run better than any other known sort in general cases. Thus, it is a popular sort to use in code libraries. It
works by divide and conquer, by selecting a pivot value, splitting the list into parts that are either less than or greater
than the pivot, and then sorting the two parts.

radix

Synonym for base. The number of digits in a number representation. For example, we typically represent numbers in
base (or radix) 10. Hexidecimal is base (or radix) 16.

radix sort

A sorting algorithm that works by processing records with & digit keys in k passes, where each pass sorts the records
according to the current digit. At the end of the process, the records will be sorted. This can be efficient if the number
of digits is small compared to the number of records. However, if the n records all have unique key values, than at
least Q(logn) digits are required, leading to an Q(nlogn) sorting algorithm that tends to be much slower than other
sorting algorithms like Quicksort or mergesort.

RAM

Abbreviation for Random Access Memory.

random access

In file processing terminology, a disk access to a random position within the file. More generally, the ability to access
an arbitrary record in the file.

random access memory

Abbreviated RAM, this is the principle example of primary storage in a modern computer. Data access times are
typically measured in billionths of a second (microseconds), which is roughly a million times faster than data access
from a disk drive. RAM is where data are held for immediate processing, since access times are so much faster than
for secondary storage. RAM is a typical part of a computer’s memory hierarchy.

random permutation

One of the n! possible permutations for a set of n element is selected in such a way that each permutation has equal
probability of being selected.

randomized algorithm

An algorithm that involves some form of randomness to control its behavior. The ultimate goal of a randomized
algorithm is to improve performance over a deterministic algorithm to solve the same problem. There are a number of
variations on this theme. A “Las Vegas algorithm” returns a correct result, but the amount of time required might or
might not improve over a deterministic algorithm. A “Monte Carlo algorithm” is a form of probabilistic algorithm
that is not guarenteed to return a correct result, but will return a result relatively quickly.

range
The set of possible outputs for a function.

range query
Records are returned if their relevant key value falls wit22363pecified range.



read/write head
Synonym for I/O head.

rebalancing operation

An operation performed on balanced search trees, such as the AVL Tree or Splay Tree, for the purpose of keeping
the tree height balanced.

record

A collection of information, typically implemented as an object in an object-oriented programming language. Many
data structures are organized containers for a collection of records.

recurrence relation

A recurrence relation (or less formally, recurrence) defines a function by means of an expression that includes one or
more (smaller) instances of itself. A classic example is the recursive definition for the factorial function,
F(n) =nx*xF(n—1).

recurrence with full history

A special form of recurrence relation that includes a summation with a copy of the recurrence inside. The recurrence
that represents the average case cost for Quicksort is an example. This internal summation can typically be removed
with simple techniques to simplify solving the recurrence.

recursion
The process of using recursive calls. An algorithm is recursive if it calls itself to do part of its work. See recursion.

recursive call
Within a recursive function, it is a call that the function makes to itself.

recursive data structure

A data structure that is partially composed of smaller or simpler instances of the same data structure. For example,
linked lists and binary trees can be viewed as recursive data structures.

recursive function
A function that includes a recursive call.

recursively enumerable
A language L is recursively enumerable if there exists a Turing machine M such that L = L(M).

Red-Black Tree
A balanced variation on a BST.

reduction

In algorithm analysis, the process of deriving asymptotic bounds for one problem from the asymptotic bounds of
another. In particular, if problem A can be used to solve problem B, and problem A is proved to be in O(f(n)), then
problem B must also be in O(f(n)). Reductions are often used to show that certain problems are at least as expensive
as sorting, or that certain problems are NP-Complete.

reference

A value that enables a program to directly access some particular data item. An example might be a byte position
within a file where the record is stored, or a pointer to a record in memory. (Note that Java makes a distinction
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between a reference and the concept of a pointer, since it does not define a reference to necessarily be a byte position
in memory.)

reference count algorithm

An algorithm for garbage collection. Whenever a reference is made from a variable to some memory location, a
counter associated with that memory location is incremented. Whenever the reference is changed or deleted, the
reference count is decremented. If this count goes to zero, then the memory is considered free for reuse. This
approach can fail if there is a cycle in the chain of references.

reference parameter

A parameter that has been passed by reference. Such a parameter can be modified inside the function or method.

reflexive

In set notation, binary relation R on set S is reflexive if aRa for all a € S.

Region Quadtree

A spatial data structure for storing 2D pixel data. The idea is that the root of the tree represents the entire image, and
it is recursively divided into four equal subquadrants if not all pixels associated with the current node have the same
value. This is structurally equivalent to a PR quadtree, only the decomposition rule is changed.

regular expression

A way to specify a set of strings that define a language using the operators of union, contatenation, and star-closure. A
regular expression defines some regular language.

regular grammar

And grammar that is either right-regular or left-regular. Every regular grammar describes a regular language.

regular language

A language L is a regular language if and only if there exists a Deterministic Finite Automata M such that
L = L(M).

relation

In set notation, a relation R over set S is a set of ordered pairs from S.

replacement selection

A variant of heapsort most often used as one phase of an external sort. Given a collection of records stored in an
array, and a stream of additional records too large to fit into working memory, replacement selection will unload the
heap by sending records to an output stream, and seek to bring new records into the heap from the input stream in
preference to shrinking the heap size whenever possible.

reserved block

In a memory manager, this refers to space in the memory pool that has been allocated to store data received from
the client. This is in contrast to the free blocks that represent space in the memory pool that is not allocated to storing
client data.

resource constraints

Examples of resource constraints include the total space available to store the data (possibly divided into separate
main memory and disk space constraints) and the time allowed to perform each subtask.

root
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In a tree, the topmost node of the tree. All other nodes in the tree are descendants of the root.

rotation

In the AVL Tree and Splay Tree, a rotation is a local operation performed on a node, its children, and its grandchildren
that can result in reordering their relationship. The goal of performing a rotation is to make the tree more balanced.

rotational delay

When processing a disk access, the time that it takes for the first byte of the desired data to move to under the 1/0
head. On average, this will take one half of a disk rotation, and so constitutes a substantial portion of the time required
for the disk access.

rotational latency
A synonym for rotational delay.

run

A series of sorted records. Most often this refers to a (sorted) subset of records that are being sorted by means of an
external sort.

run file

A temporary file that is created during the operation of an external sort, the run file contains a collection of runs. A
common structure for an external sort is to first create a series of runs (stored in a run file), followed by merging the
runs together.

run-time polymorphism
A form of polymorphism known as Overriding. Overridden methods are those which implement a new method with
the same signature as a method inherited from its base class. Compare to compile-time polymorphism.

runtime environment

The environment in which a program (of a particular programming language) executes. The runtime environment
handles such activities as managing the runtime stack, the free store, and the garbage collector, and it conducts
the execution of the program.

runtime stack
The place where an activation record is stored when a subroutine is called during a program’s runtime.

scanner
The part of a compiler that is responsible for doing lexical analysis.

scope
The parts of a program that can see and access a variable.

search key

A field or part of a record that is used to represent the record when searching. For example, in a database of customer
records, we might want to search by name. In this case the name field is used as the search key.

search lower bound

The problem of searching in an array has provable lower bounds for specific variations of the problem. For an
unsorted array, it is Q(n) comparisons in the worst case, typically proved using an adversary argument. For a
sorted array, it is Q(logn) in the worst case, typically proved using an argument similar to the sorting lower bound

proof. However, it is possible to search a sorted array in the average case in O(loglogn) time.
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search problem

Given a particular key value K, the search problem is to locate a record (k;, I;) in some collection of records L such
that k; = K (if one exists). Searching is a systematic method for locating the record (or records) with key value
kj =K.

search tree

A tree data structure that makes search by key value more efficient. A type of container, it is common to implement
an index using a search tree. A good search tree implementation will guarentee that insertion, deletion, and search
operations are all ©(logn).

search trie
Any search tree that is a trie.

searching

Given a search key K and some collection of records L, searching is a systematic method for locating the record (or
records) in L with key value k; = K.

secondary clustering

In hashing, the tendency in certain collision resolution methods to create clustering in sections of the hash table. In
primary clustering, this is caused by a cluster of keys that don’t necessarily hash to the same slot but which following
significant portions of the same probe sequence during collision resolution. Secondary clustering results from the
keys hashing to the same slot of the table (and so a collision resolution method that is not affected by the key value
must use the same probe sequence for all such keys). This problem can be resolved by double hashing since its
probe sequence is determined in part by a second hash function.

secondary index
Synonym for secondary key index.

secondary key

A key field in a record such as salary, where a particular key value might be duplicated in multiple records. A
secondary key is more likely to be used by a user as a search key than is the record’s primary key.

secondary key index
Associates a secondary key value with the primary key of each record having that secondary key value.

secondary storage

Refers to slower but cheaper means of storing data. Typical examples include a disk drive, a USB memory stick, or a
solid state drive.

sector

A unit of space on a disk drive that is the amount of data that will be read or written at one time by the disk drive
hardware. This is typically 512 bytes.

sector header

On a disk drive, a piece of information at the start of a sector that allows the 1/0 head to recognize the identity (or
equivalently, the address) of the current sector.

seed

In random number theory, the starting value for a random number series. Typically used with any linear congruential

method.
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seek

On a disk drive, the act of moving the 1/0 head from one track to another. This is usually considered the most
expensive step during a disk access.

selection sort

While this sort requires ©(n?) time in the best, average, and worst cases, it requires only ©(n) swap operations.
Thus, it does relatively well in applications where swaps are expensive. It can be viewed as an optimization on bubble
sort, where a swap is deferred until the end of each iteration.

self-organizing list
A list that, over a series of search operations, will make use of some heuristic to re-order its elements in an effort to
improve search times. Generally speaking, search is done sequentially from the beginning, but the self-organizing
heuristic will attempt to put the records that are most likely to be searched for at or near the front of the list. While
typically not as efficient as binary search on a sorted list, self-organizing lists do not require that the list be sorted
(and so do not pay the cost of doing the sorting operation).

self-organizing list heuristic

A heuristic to use for the purpose of maintaining a self-organizing list. Commonly used heuristics include move-to-
front and transpose.

separate chaining
In hashing, a synonym for open hashing

sequence

In set notation, a collection of elements with an order, and which may contain duplicate-valued elements. A sequence
is also sometimes called a tuple or a vector.

sequential access

In file processing terminology, the requirement that all records in a file are accessed in sequential order. Alternatively,
a storage device that can only access data sequentially, such as a tape drive.

sequential fit

In a memory manager, the process of searching the memory pool for a free block large enough to service a
memory request, possibly reserving the remaining space as a free block. Examples are first fit, circular first fit,
best fit, and worst fit.

sequential search
The simplest search algorithm: In an array, simply look at the array elements in the order that they appear.

sequential tree representation

A representation that stores a series of node values with the minimum information needed to reconstruct the tree
structure. This is a technique for serializing a tree.

serialization

The process of taking a data structure in memory and representing it as a sequence of bytes. This is sometimes done
in order to transmit the data structure across a network or store the data structure in a stream, such as on disk.
Deserialization reconstructs the original data structure from the serialized representation.

set

A collection of distinguishable members or elements. 431



set former
A way to define the membership of a set, by using a text description. Example: {z | z is a positive integer}.

set product
Written Q x P, the set product is a set of ordered pairs such that ordered pair (a,b) is in the product whenever q ¢ P
and b e Q For example’ when P = {2537 5} and Q = {55 10}’ Q xP = {(275)7 (27 10)7 (375)5 (37 10)5 (575)7 (5710)}'

shallow copy
Copying the reference or pointer value without copying the actual content.

Shellsort
A sort that relies on the best-case cost of insertion sort to improve over ©(n?) worst case cost.

shifting method

A technique for finding a closed-form solution to a summation or recurrence relation.

shortest path

Given a graph with distances or weights on the edges, the shortest path between two nodes is the path with least
total distance or weight. Examples of the shortest paths problems are the single-source shortest paths problem and
the all-pairs shortest paths problem.

sibling
In a tree, a sibling of node A is any other node with the same parent as A.

signature
In a programming language, the signature for a function is its return type and its list of parameters and their types.

signature file

In document processing, a signature file is a type of bitmap used to indicate which documents in a collection contain a
given keyword, such that there is a bitmap for each keyword.

simple cycle
In graph terminology, a cycle is simple if its corresponding path is simple, except that the first and last vertices of the
cycle are the same.

simple path
In graph terminology, a path is simple if all vertices on the path are distinct.

simple type
A data type whose values contain no subparts. An example is the integers.

simulating recursion
If a programming language does not support recursion, or if you want to implement the effects of recursion more
efficiently, you can use a stack to maintain the collection of subproblems that would be waiting for completion during
the recursive process. Using a loop, whenever a recursive call would have been made, simply add the necessary
program state to the stack. When a return would have been made from the recursive call, pop the previous program
state off of the stack.

single rotation

A type of rebalancing operation used by the Splay Tree and AVL Tree.
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single-source shortest paths problem

Given a graph with weights or distances on the edges, and a designated start vertex s, find the shortest path from s
to every other vertex in the graph. One algorithm to solve this problem is Dijkstra’s algorithm.

singly linked list
A linked list implementation variant where each list node contains access an pointer only to the next element in the
list.

skip list
A form of linked list that adds additional links to improve the cost of fundamental operations like insert, delete, and
search. It is a probabilistic data structure since it adds the additional links using a probabilistic algorithm. It can
implement a dictionary more efficiently than a BST, and is roughly as difficult to implement.

slot
In hashing, a position in a hash table.

snowplow argument

An analogy used to give intuition for why replacement selection will generate runs that are on average twice the size
of working memory. Records coming from the input stream have key values that might be of any size, whose size is
related to the position of a falling snowflake. The replacement selection process is analogous to a snowplow that
moves around a circular track picking up snow. In steady state, given a certain amount of snow equivalent to working
memory size M, an amount of snow (incoming records from the input stream) is expected to fall ahead of the plow as
the size of the working memory during one cycle of the plow (analogously, one run of the replacement selection
algorithm). Thus, the snowplow is expected in one pass (one run of replacement selection) to pick up 2M snow.

software engineering
The study and application of engineering to the design, development, and maintenance of software.

software reuse

In software engineering, the concept of reusing a piece of software. In particular, using an existing piece of software
(such as a function or library) when creating new software.

solution space
The possible solutions to a problem. This typically refers to an optimization problem, where some solutions are more
desireable than others.

solution tree

An ordering imposed on the set of solutions within a solution space in the form of a tree, typically derived from the
order that some algorithm would visit the solutions.

sorted list

A list where the records stored in the list are arranged so that their key values are in ascending order. If the list uses
an array-based list implementation, then it can use binary search for a cost of ©(logn). But both insertion and
deletion will be require ©(n) time.

sorting lower bound

The lower bound for the problem of sorting is Q(nlogn). This is traditionally proved using a decision tree model for
sorting algorithms, and recognizing that the minimum depth of the decision tree for any sorting algorithm is Q(nlogn)
since there are n! permutations of the n input records to distinguish between during the sorting process.
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sorting problem

Given a set of records ry, 79, ..., 7, With key values ki, ks, ..., k,, the sorting problem is to arrange the records into
any order s such that records r, , r,, ..., 75, have keys obeying the property k,, < k,, <...< ks,. In other words, the
sorting problem is to arrange a set of records so that the values of their key fields are in non-decreasing order.

space/time tradeoff

Many programs can be designed to either speed processing at the cost of additional storage, or reduce storage at the
cost of additional processing time.

sparse graph
A graph where the actual number of edges is much less than the possible number of edges. Generally, this is
interpreted to mean that the degree for any vertex in the graph is relatively low.

sparse matrix

A matrix whose values are mostly zero. There are a number of data structures that have been developed to store
sparse matrices, with the goal of reducing the amount of space required to represent it as compared to simply using a
regular matrix representation that stores a value for every matrix position.

spatial
Referring to a position in space.

spatial application
An application what has spatial aspects. In particular, an application that stores records that need to be searched by
location.

spatial attribute

An attribute of a record that has a position in space, such as the coordinate. This is typically in two or more
dimensions.

spatial data
Any object or record that has a position (in space).

spatial data structure
A data structure designed to support efficient processing when a spatial attribute is used as the key. In particular, a
data structure that supports efficient search by location, or finds all records within a given region in two or more
dimensions. Examples of spatial data structures to store point data include the bintree, the PR quadtree and the kd
tree.

spindle
The center of a disk drive that holds the platters in place.

Splay Tree
A variant implementation for the BST, which differs from the standard BST in that it uses modified insert and remove
methods in order to keep the tree balanced. Similar to an AVL Tree in that it uses the concept of rotations in the
insert and remove operations. While a Splay Tree does not guarentee that the tree is balanced, it does guarentee that
a series of n operations on the tree will have a total cost of ©(nlogn) cost, meaning that any given operation can be
viewed as having amortized cost of O(logn).

splaying
The act of performing an rebalancing operation on a %glfy Tree.



stable
A sorting algorithm is said to be stable if it does not change the relative ordering of records with identical key values.

stack
A list-like structure in which elements may be inserted or removed from only one end.

stack frame

Frame of data that pushed into and poped from call stack

stack variable

Another name for a local variable.

stale pointer

Within the context of a buffer pool or memory manager, this means a reference to a buffer or memory location that
is no longer valid. For example, a program might make a memory request to a buffer pool, and be given a reference to
the buffer holding the requested data. Over time, due to inactivity, the contents of this buffer might be flushed. If the
program holding the buffer reference then tries to access the contents of that buffer again, then the data contents will
have changed. The possibility for this to occur depends on the design of the interface to the buffer pool system. Some
designs make this impossible to occur. Other designs make it possible in an attempt to deliver greater performance.

start state

In a finite automata, the designated state in which the machine will always begin a computation.

start symbol
In a grammar, the designated non-terminal that is the intial point for deriving a string in the langauge.

state

The condition that something is in at some point in time. In computing, this typically means the collective values of any
existing variables at some point in time. In an automata, a state is an abstract condition, possibly with associated
information, that is primarily defined in terms of the conditions that the automata may transition from its present state
to another state.

State Machine

Synonym for finite automata.

static

Something that is not changing (in contrast to dynamic). In computer programming, static normally refers to
something that happens at compile time. For example, static analysis is analysis of the program’s text or structure, as
opposed to its run-time behavior. Static binding or static memory allocation occurs at compile time.

static scoping
A synonym for lexical scoping.

Strassen’s algorithm

A recursive algorithm for matrix multiplication. When multiplying two n x n matrices, this algorithm runs faster than the
©(n?®) time required by the standard matrix multiplication algorithm. Specifically, Strassen’s algorithm requires time
Theta(n'°e27) time. This is achieved by refactoring the sub-matrix multiplication and addition operations so as to need
only 7 sub-matrix multiplications instead of 8, at a cost of additional sub-matrix addition operations. Thus, while the
asymptotic cost is lower, the constant factor in the growth rate equation is higher. This makes Strassen’s algorithm
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inefficient in practice unless the arrays being multiplied are rather large. Variations on Strassen’s algorithm exist that
reduce the number of sub-matrix multiplications even futher at a cost of even more sub-matrix additions.

strategy

An approach to accomplish a task, often encapsulated as an algorithm. Also the name for a design pattern that
separates the algorithm for performing a task from the control for applying that task to each member of a collection. A
good example is a generic sorting function that takes a collection of records (such as an array) and a “strategy” in the
form of an algorithm that knows how to extract the key from a record in the array. Only subtly different from the visitor
design pattern, where the difference is primarily one of intent rather than syntax. The strategy design pattern is
focused on encapsulating an activity that is part of a larger process, so that different ways of performing that activity
can be substituted. The visitor design pattern is focused on encapsulating an activity that will be performed on all
members of a collection so that completely different activities can be substituted within a generic method that
accesses all of the collection members.

stream
The process of delivering content in a serialized form.

strict partial order

In set notation, a relation that is irreflexive, antisymmetric, and transitive.

strong induction

An alternative formulation for the induction step in a proof by induction. The induction step for strong induction is: If
Thrm holds for all k,c < k < n, then Thrm holds for n.

subclass
In object-oriented programming, any class within a class hierarchy that inherits from some other class.

subgraph
A subgraph S is formed from graph G by selecting a subset VvV, of G’s vertices and a subset E, of G’s edges such
that for every edge e € E,, both vertices of e are in V.

subset

In set theory, a set A is a subset of a set B, or equivalently B is a superset of 4, if all elements of A are also elements
of B.

subtract-and-guess
A technique for finding a closed-form solution to a summation or recurrence relation.

subtree

A subtree is a subset of the nodes of a binary tree that includes some node R of the tree as the subtree root along
with all the descendants of R.

successful search

When searching for a key value in a collection of records, we might find it. If so, we call this a successful search. The
alternative is an unsuccessful search.

summation

The sum of costs for some function applied to a range of parameter values. Often written using Sigma notation. For
example, the sum of the integers from 1 to n can be written as Y7 ;4.
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superset

In set theory, a set A is a subset of a set B, or equivalently B is a superset of A4, if all elements of A are also
elements of B.

symbol table

As part of a compiler, the symbol table stores all of the identifiers in the program, along with any necessary
information needed about the identifier to allow the compiler to do its job.

symmetric
In set notation, relation R is symmetric if whenever aRb, then bRa, for all a,b € S.

symmetric matrix
A square matrix that is equal to its transpose. Equivalently, for a n x n matrix A, for all i,j < n, A[s, j] = A[j,1].

syntax analysis

A phase of compilation that accepts tokens, checks if program is syntactically correct, and then generates a parse
tree.

tail

The end of a list.

terminal

A specific character or string that appears in a production rule. In contrast to a non-terminal, which represents an
abstract state in the production. Similar to a literal, but this is the term more typically used in the context of a
compiler.

Theta notation

In algorithm analysis, © notation is used to indicate that the upper bound and lower bound for an algorithm or
problem match.

token

The basic logical units of a program, as deterimined by lexical analysis. These are things like arithmetic operators,
language keywords, variable or function names, or numbers.

tombstone

In hashing, a tombstone is used to mark a slot in the hash table where a record has been deleted. Its purpose is to
allow the collision resolution process to probe through that slot (so that records further down the probe sequence
are not unreachable after deleting the record), while also allowing the slot to be reused by a future insert operation.

topological sort

The process of laying out the vertices of a DAG in a linear order such that no vertex A in the order is preceded by a
vertex that can be reached by a (directed) path from A. Usually the (directed) edges in the graph define a prerequisite
system, and the goal of the topological sort is to list the vertices in an order such that no prerequisites are violated.

total order

A binary relation on a set where every pair of distinct elements in the set are comparable (that is, one can determine
which of the pair is greater than the other).

total path length

In a tree, the sum of the levels for each node. 437



Towers of Hanoi problem

A standard example of a recursive algorithm. The problem starts with a stack of disks (each with unique size) stacked
decreasing order on the left pole, and two additional poles. The problem is to move the disks to the right pole, with the
constraints that only one disk can be moved at a time and a disk may never be on top of a smaller disk. For n disks,
this problem requires ©(2™) moves. The standard solution is to move n — 1 disks to the middle pole, move the bottom
disk to the right pole, and then move the n — 1 disks on the middle pole to the right pole.

track

On a disk drive, a concentric circle representing all of the sectors that can be viewed by the I/0 head as the disk
rotates. The significance is that, for a given placement of the I/O head, the sectors on the track can be read without
performing a (relatively expensive) seek operation.

track-to-track seek time

Expected (average) time to perform a seek operation from a random track to an adjacent track. Thus, this can be
viewed as the minimum possible seek time for the disk drive. This is one of two metrics commonly provided by disk
drive vendors for disk drive performance, with the other being average seek time.

trailer node

Commonly used in implementations for a linked list or related structure, this node follows the last element of the list.
Its purpose is to simplify the code implementation by reducing the number of special cases that must be programmed
for.

transducer

A machine that takes an input and creates an output. A Turing Machine is an example of a transducer.

transitive

In set notation, relation R is transitive if whenever aRb and bRc, then aRe, for all a,b,c € S.

transpose

In the context of linear algebra, the transpose of a matrix A is another matrix AT created by writing the rows of A as
the columns of AT. In the context of a self-organizing list, transpose is a heuristic used to maintain the list. Under
this heuristic, whenever a record is accessed it is moved one position closer to the front of the list.

trap state
In a FSA, any state that has all transitions cycle back to itself. Such a state might be final.

traversal

Any process for visiting all of the objects in a collection (such as a tree or graph) in some order.

tree

A tree T is a finite set of one or more nodes such that there is one designated node R, called the root of T. If the set
(T — {R}) is not empty, these nodes are partitioned into n > 0 disjoint sets T, T, ..., T,,_1, each of which is a tree,
and whose roots Ry, Ry, ..., R, , respectively, are children of R.

tree traversal

A traversal performed on a tree. Traditional tree traversals include preorder and postorder traversals for both binary
and general trees, and inorder traversal that is most appropriate for a BST.

trie
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A form of search tree where an internal node represents a split in the key space at a predetermined location, rather
than split based on the actual key values seen. For example, a simple binary search trie for key values in the range 0
to 1023 would store all records with key values less than 512 on the left side of the tree, and all records with key
values equal to or greater than 512 on the right side of the tree. A trie is always a full tree. Folklore has it that the term
comes from “retrieval”, and should be pronounced as “try” (in contrast to “tree”, to distinguish the differences in the
space decomposition method of a search tree versus a search trie). The term “trie” is also sometimes used as a
synonym for the alphabet trie.

truth table

In symbolic logic, a table that contains as rows all possible combinations of the boolean variables, with a column that
shows the outcome (true or false) for the expression when given that row’s truth assignment for the boolean variables.

tuple

In set notation, another term for a sequence.

Turing machine

A type of finite automata that, while simple to define completely, is capable of performing any computation that can
be performed by any known computer.

Turing-acceptable

A language is Turing — acceptable if there is some Turing machine that accepts it. That is, the machine will halt in an
accepting configuration if the string is in the language, and go into a hanging configuration if the string is not in the
language.

Turing-computable function
Any function for which there exists a Turing machine that can perform the necessary work to compute the function.

Turing-decidable

A language is Turing-decideable if there exists a Turing machine that can clearly indicate for every string whether that
string is in the language or not. Every Turing-decidable language is also Turing-acceptable, because the Turing
machine that can decide if the string is in the language can be modified to go into a hanging configuration if the
string is not in the language.

two-coloring

An assignment from two colors to regions in an image such that no two regions sharing a side have the same color.

type
A collection of values.

unary notation

A way to represent natural numbers, where the value of zero is represented by the empty string, and the value n is
represented by a series of n marks.

uncountably infinite
uncountable

An infinite set is uncountably infinite if there does not exist any mapping from it to the set of integers. This is often
proved using a diagonalization argument. The real numbers is an example of an uncountably infinite set.

underflow
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The condition where the amount of data stored in an entity has dropped below some minimum threshold. For example,
a node in a B-tree is required to be at least half full. If a record deletion causes the node to be less than half full, then
it is in a condition of underflow, and something has to be done to correct this.

undirected edge

An edge that connects two vertices with no direction between them. Many graph representations will represent such
an edge with two directed edges.

undirected graph
A graph whose edges do not have a direction.

uninitialized
Uninitialized variable means it has no initial value.

UNION

One half of the UNION/FIND algorithm for managing disjoint sets. It is the process of merging two trees that are
represented using the parent pointer representation by making the root for one of the trees set its parent pointer to
the root of the other tree.

UNION/FIND

A process for mainining a collection of disjoint sets. The FIND operation determines which disjoint set a given object
resides in, and the UNION operation combines two disjoint sets when it is determined that they are members of the
same equivalence class under some equivalence relation.

unit production

A unit production is a production in a grammar of the form A — B, where A, B € the set of non-terminals for the
grammar. Any grammar with unit productions can be rewritten to remove them.

unsolveable problem
A problem that can proved impossible to solve on a computer. The classic example is the halting problem.

unsorted list

A list where the records stored in the list can appear in any order (as opposed to a sorted list). An unsorted list can
support efficient (©(1)) insertion time (since you can put the record anywhere convenient), but requires ©(n) time for
both search and and deletion.

unsuccessful search

When searching for a key value in a collection of records, we might not find it. If so, we call this an unsuccessful
search. Usually we require that this means that no record in the collection actually has that key value (though a
probabilistic algorithm for search might not require this to be true). The alternative to an unsuccessful search is a
successful search.

unvisited

In graph algorithms, this refers to a node that has not been processed at the current point in the algorithm. This
information is typically maintained by using a mark array.

upper bound
In algorithm analysis, a growth rate that is always greater than or equal to the growth rate of the algorithm in
question. In practice, this is the slowest-growing function that we know grows at least as fast as all but a constant

number of inputs. It could be a gross over-estimate of the truth. Since the upper bound for the algorithm can be very
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different for different situations (such as the best case or worst case), we typically have to specify which situation we
are referring to.

value parameter

A parameter that has been passed by value. Changing such a parameter inside the function or method will not affect
the value of the calling parameter.

variable-length coding

Given a collection of objects, a variable-length coding scheme assigns a code to each object in the collection using
codes that can be of different lengths. Typically this is done in a way such that the objects that are most likely to be
used have the shortest codes, with the goal of minimizing the total space needed to represent a sequence of objects,
such as when representing the characters in a document. Huffman coding is an example of a variable-length coding
scheme. This is in contrast to fixed-length coding.

vector

In set notation, another term for a sequence. As a data structure, the term vector usually used as a snyonym for a
dynamic array.

vertex
Another name for a node in a graph.

virtual memory

A memory management technique for making relatively fast but small memory appear larger to the program. The large
“virtual” data space is actually stored on a relatively slow but large backing storage device, and portions of the data
are copied into the smaller, faster memory as needed by use of a buffer pool. A common example is to use RAM to
manage access to a large virtual space that is actually stored on a disk drive. The programmer can implement a
program as though the entire data content were stored in RAM, even if that is larger than the physical RAM available
making it easier to implement.

visit
During the process of a traversal on a graph or tree the action that takes place on each node.

visited
In graph algorithms, this refers to a node that has previously been processed at the current point in the algorithm. This
information is typically maintained by using a mark array.

visitor
A design pattern where a traversal process is given a function (known as the visitor) that is applied to every object in
the collection being traversed. For example, a generic tree or graph traversal might be designed such that it takes a
function parameter, where that function is applied to each node.

volatile

In the context of computer memory, this refers to a memory that loses all stored information when the power is turned
off.

weight
A cost or distance most often associated with an edge in a graph.

weighted graph

A graph whose edges each have an associated weight or cost.
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weighted path length
Given a tree, and given a weight for each leaf in the tree, the weighted path length for a leaf is its weight times its
depth.

weighted union rule
When merging two disjoint sets using the UNION/FIND algorithm, the weighted union rule is used to determine which
subtree’s root points to the other. The root of the subtree with fewer nodes will be set to point to the root of the subtree
with more nodes. In this way, the average depth of nodes in the resulting tree will be less than if the assignment had
been made in the other direction.

working memory
The portion of main memory available to an algorithm for its use. Typically refers to main memory made available to
an algorithm that is operating on large amounts of data stored in peripheral storage, the working memory represents
space that can hold some subset of the total data being processed.

worst case
In algorithm analysis, the problem instance from among all problem instances for a given input size n that has the
greatest cost. Note that the worst case is not when n is big, since we are referring to the wrost from a class of inputs
(i.e, we want the worst of those inputs of size n).

worst fit
In a memory manager, worst fit is a heuristic for deciding which free block to use when allocating memory from a
memory pool. Worst fit will always allocate from the largest free block. The rationale is that this will be the method
least likely to cause external fragmentation in the form of small, unuseable memory blocks. The disadvantage is that
it tends to eliminate the availability of large freeblocks needed for unusually large requests.

zigzig
A type of rebalancing operation used by splay trees.

Zipf distribution

A data distribution that follows Zipf’s law, an emprical observation that many types of data studied in the physical and
social sciences follow a power law probability distribution. That is, the frequency of any record in the data collection is
inversely proportional to its rank when the collection is sorted by frequency. Thus, the most frequently appearing
record has a frequency much higher than the next most frequently appearing record, which in turn has a frequency
much higher than the third (but with ratio slightly lower than that for the first two records) and so on. The 80/20 rule is
a casual characterization of a Zipf distribution. Adherence to a Zipf distribution is important to the successful operation
of a cache or self-organizing list.

zone

In memory management, the concept that different parts of the memory pool are handled in different ways. For
example, some of the memory might be handled by a simple freelist, while other portions of the memory pool might
be handled by a sequential fit memory manager. On a disk drive the concept of a zone relates to the fact that there
are limits to the maximum data density, combined with the fact that the need for the same angular distance to be used
for a sector in each track means that tracks further from the center of the disk will become progressively less dense. A
zone in this case is a series of adjacent tracks whose data density is set by the maximum density of the innermost
track of that zone. The next zone can then reset the data density for its innermost track, thereby gaining more total
storage space while preserving angular distance for each sector.
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OpenDSA License

OpenDSA is Copyright © 2013-2016 by Ville Karavirta and Cliff Shaffer.
All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the "Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial
portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT
OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
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